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Abstract

The main difficulty in realizing a motion smulator comes from the constraints on its workspace. The so-called
washout filter prevents a smulator from being driven to go off its pre-determined boundaries and generate excessive
torques. By noting that the existing washout filters are conservative and more aggressive motions may be accommo-
dated, this paper presents a novel approach that fully exploits the smulator workspace and thereby reproduces the real -
world sensations with high fidelity. The washout filter converts the rea-world input trgjectory as a realizable one that
satisfies the spatial and dynamic constraints while minimizing the sensation error and fidelity between the motions
experienced in the real world and on the motion simulator. The control objective isto reduce the computational burdens
by using the QP agorithm. The proposed approach formulates the task of designing a washout filter as a quadratic
programming (QP). The direct approach to the solution of the QP often resultsin a computational burden that amounts
to O(N®) flopsand O(N?) storage space (N =10* ~10°, typically). By judiciously exploiting the Toeplitz struc-
tures of the underlying matrices, an orders-of-magnitude faster algorithm is obtained to reduce the computational bur-
densto O(Nlog, N) flops and O(N) storage space. The extensive smulaion studies on the Eclipse-ll motion
simulator at Seoul Nationa University assure that the QP-based fast agorithm outperforms the existing ones in repro-
ducing the real-world sensations.

Keywords: Motion smulator; Washout filter; Workspace; Linear quadratic regulator (LQR); Quadratic programming (QP); Toeplitz;

FFT; Eclipse-ll

1. Introduction

For last thirty years, numerous types of motion
simulators have been developed to serve different
needs. Although pilots and crews have been their
primary beneficiaries, the motion smulators have
been steadily expanding their presences in novel ap-
plications such as prototype testing, human behavior
study, etc. [1]. Recently, the motion simulators have
pioneered their territory into the amusement park to
replace the bulky and costly rides [2]. However, the
current amusement simulators focus on the visual and
audio systems rather than precise reproduction of
motions [3]. As aresult, the amusement industry has
yet to observe a full-fledged motion simulator that
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provides satisfactory motion cues.

The limited workspace of a motion simulator does
not allow direct duplication of the real-world motion
on the smulator platform, which naturally prompts
the development of the washout filter (whose name
originates from the fact that one of its functions is to
“wash out” the position of the smulator back to its
neutral position). The washout filter converts the real-
world motion into the realizable motion on the simu-
lator while minimizing the sensational difference
between the read-world and smulated motions [4].
Among many ways of designing washout filters, the
so-called classica washout agorithm is most widdly
accepted by virtue of its smplicity and intuitiveness
[1]. Although it essentidly provides high-pass filter-
ing of linear acceleration and angular rate, the classi-
ca washout algorithm aso redizes the sustained (low
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frequency) specific force cue (linear acceleration) by
tilting the motion platform, while exploiting the oto-
lith system’s inability to distinguish between pitch
motion and longitudinal specific force. Despite its
reasonable performance, the algorithm still has to rely
on manud tuning of fixed gain parameters [5, 6].
Then emerge adaptive agorithms that continuously
update the gains in an effort to minimize the motion
errors and the magnitudes of the smulator states [7].
Y et, adaptive agorithms generate some false motion
cues. In order to overcome the shortcomings of the
classical and adaptive agorithms, a rigorous frame-
work is proposed based on the linear quadratic regula-
tor (LQR) theory [8]. While explicitly considering the
human vedtibular system, the LQR-based approach
factors sensation error, the smulation state, and the
command trgectory into the cost function and solves
the resulting optimization problem using commer-
cidly available tools[8].

Dexpite its remarkable success, the LQR-based
washout filter still leaves room for further improve-
ment on two accounts: the design procedure is itera-
tive and the solution is rather conservative. In other
words, it does not take full advantage of the smulator
workspace and other constraints since the design pro-
cedure takes into account the target trgjectory only
after one-iteration is completed [8]. These two draw-
backs naturdly cal for an agorithm that explicitly
takes into account the simulator constraints at the
stage of the problem formulation and non-iteratively
finds an optimal solution that utilizes the simulator
capability to full extent. When the simulator trgjec-
tory is given a priori, the constrained quadratic pro-
gramming (QP) provides a mathematical foundation
for such an agorithm. The smulator constraints such
as workspace boundary, torque limits etc., are fac-
tored into linear matrix inequalities while the sensa
tion error becomes a quadratic cost function.

Despite the excellent performance and clear advan-
tages over the existing approaches, the proposed ago-
rithm suffers from a huge computationa burden that
does not come into the picture as long as the problem
sizeis small. The conventiona solution to the optimi-
zation problem (QP) requires O(N®) flops and
O(N?) storage space, where N is the number
dependent upon simulation or ride duration. Consid-
ering that typica applications require N ranging
from 10* to 10°, the proposed agorithm must
overcome the apparent cul-de-sac in order to be
commercidly viable. Direct solution of the con-

strained QP involves congtructing matrices for the
quadratic cost and computing several matrix-vector
products, which are largely responsible for huge
computational burden. By judicioudy exploiting the
structures of the underlying matrices, it is shown that
an orders-of-magnitude faster implementation is pos-
sible with a much less storage requirement. The Toe-
plitz structure (when computing the cost matrices and
matrix-vector products) alows such time and storage
savings.

Extensve simulation studies are conducted to test
the viability of the proposed agorithm with the
Eclipse-ll motion simulator which dlows the full-
fledged 6 degrees-of-freedom motions, i.e., infinite
rotations as well as finite trandations [9, 10]. For
smooth trgjectories that do not require violating the
smulator constraints, two approaches based on the
LQR and QP produce smilar results. However, for
those trgjectories that push the limits of the simulator
congraints, the QP-based approach displays its clear
edge over the LQR-based counterpart in terms of
senstion errors.

This paper is organized as follows. Section 2 de-
scribes the LQR-based washout filter. Section 3
shows how the problem of finding an optima trgjec-
tory can be recast into a constrained QP. Section 3
aso derives an orders-of-magnitude faster agorithm
for solving the constrained QP. After briefly explain-
ing the Eclipse-ll motion simulator, Section 4 pre-
sents the results of simulation studies to examine the
performance of the proposed agorithm, which proves
itsviahility in the real-world applications.

2. LQR-based washout filter

In this section, the washout filter design methodol-
ogy based on the LQR theory is briefly summarized
[8], which serves as a foundation for the QP-based
design of an optimd trgectory in Section 3. Fig. 1
shows the problem structure for an optimal washout
filter design, adopted throughout this paper. The main
idea of the L QR-based washout filter design isto find
alinesr transfer matrix W(s) that minimizes a certain
quadratic cost involving the sensation error e and
the simulator input «, without violating the smula-

tor constraints. The resulting filtering equation is
Ug(s)=W(s)U,(s) where Ug,(s)and U,(s) are
the Laplace transforms of the actua and the washed-
out (filtered) trgjectories, respectively. Although the
agorithms are developed and tested dong the longi
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Fig. 1. Problem structure for an optimal washout filter.

tudinal axis only (pitch and surge) throughout this
paper, they can be readily generalized to include other
axes.

The LQR-based washout filter design beginswith a
mathematical model of the human vestibular system.
Assume that the input u to the vestibular system

consists of the angular rate 6 and the specific force

. T
a, 0 tha u= [0 axJ . Then, the sensed rota-

tional motion ¢ (pitch) is given by the mathematical
model of the semicircular canas:

. GSTaSZ(l+ 7L8)
1 1+ 755) L+ 715) (L+ 7o5)
TS+ Tys?
e @
s+ Tos” +Tis + Ty
1 +71+
where Ty = I
747172 7,172
o+ 7, (1 +7
r=t2 el 2 (47 » I3=Gyr, 7Ty,

7,717
T, =G,r,T, and 71and 7, aretime congant, with
T > 1,. T,iS the adaptation time constant, and
7, is time constant with the additional lead compo-
nent. The term Gy defines the dtatic senditivity in

terms of afferent firing rate per unit of acceleration. [8,
11, 12]. Eq. (1) may be written in the Sate space
equation as

X 3=A
g=C

X]-3 + Bsccu

scc

X713 +D

@

sce SCCu !

Whae X;.3= [xl X2 XS:IT S R3 y
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1975

C,.=[1 0 0] and D, =[T3 O].

The sensed specific force a, is related to the in-
put specific force a, by the otolith model:

s+ Ay 3)

a,=Gy———>—a,_,
0 s+ By)(s+ By

where Gy, 4y, By, and B; are physical constants [8,

12]. The input specific force a, isassumed to bein
thelinear combination of three componentslike

ax :forgH_Rszé (4)

where R, is the radius from the motion platform
centroid to the pilot’s head. The first term denotes
the acceleration from a linear motion, the second
term stems from the gravitational force due to the
tilting motion and the third term accounts for the
inertia force from the angular acceleration. Eq.
(3) may be transformed into the Laplace domain:

a,(s)= fi(s)+(E-Ry.5)0 ®)
N

With Eq. (5), the sensed specific force in Eq. (3) is
recast into the following form

~ 'Rszsj - Rsonsz +gs+g4,

i-G (s+A4,)
T S5+ By )5+ By)

(s+B, )(s+B;)

(6)

which iswritten in the state equation as

X4-8 = Autox4—8 + Botou

)

a, = CpoXy.g + Doyt

where x, ¢ = [x4 Xg Xg X7 x8]T eR®,
0 1.0 0 O
-b -a 1 0 O
=0 0 0 0 O,
0 0 0 0 1
0 0 0 -b —a
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c 0
d—ac 0
B, =| e 0 |, C,y=[1 00 10]
0 J
0 h-af

D,,=Go[-R. O], a=By+By, b=ByB,

c=GoR,(a—Ay), d=Gy(g+R,b), e=Gygdy,
szO md h=GOA0.

The vestibular modd Eq. (2) and Eq. (7) may be
combined and transformed into the following state-
space description [13]:

x,=Ax, +Bu

yV :CVxV +D\/‘u’

where x, =[x/ ; xI 1" e R, uecRr?,

~ T 2 A 0
yv:[q ax] €R7, sz{ acc A :|;

Dv — |:DSCC:| [8] .

DO[{)

Dencting the vestibular system states from the ac-
tual ride and the simulator as x, and x, and defin-
ing the corresponding state error x, as
x, 2 x, —x, Yields the following state-space de-
scription for the sensation error ¢ :

X, =Ax,+Bu,—Bu,

®)

e=Cx,+Du,—Du,,

where u, = [0“ a;’T and u, = [6’5 a’lT—

X

In addition to the sensation error, the washout filter
design must take into account the smulator state x, ,

which is needed to guarantee that the smulator does
not violate its constraints. Define the smulator state

T
x; @ [ija;dtB ‘Uafcdtz J-afcdt 95} , where af

and ¢° arethe specific force and angular rate in the
simulator, respectively. Then, the dynamics of the
simulator state may be given by

Xy = Agxg +Bug 9)

01000 00
00100 00
where A;={0 0 0 0 O and B,;=|0 1].
00O0O01 00
00 O0O0O 10

Now, equipped with the dynamic models Egs. (8)
and (9) for sensation error and smulator date, the
problem of designing an optimal washout filter is cast
into the framework of the LQR theory [8]:

Find u,(¢) over [z,,¢] that minimizesthe cost J given by
tl
J= ‘[ (eTQe + u;,rRuS + x;Rdxd)dt
’0
(10)

where [fg,#] is the simulator ride duration (or
smulationtime), Q, R and R, aretheweighting
matrices. It is well-known that the solution to the
above optimization problem may be found by solving
a Riccati equation with a commercial package, e.g.
MATLAB [13, 14], which results in the transfer ma-
trix W(s) . In practice, the procedure of designing an
optimal washout filter based on the LQR theory still
requires a few iterations. The weighting matrices
Q, R and R, are first determined and the corre-
sponding filter W(s) isfound, which generates u,
from u, . The procedureisiterated until u, satisfies
all the smulator constraints:

6° (t)‘ <6

@(0)| € 0% ma: [6° ()] < B

d’ ()| S dpax forte [y, 4]

Ve (z)‘ <VE L, and

where G @5 maxs Onaxs Vinax: A dipe A€

maximum allowable simulator angular velocity, spe-
cific force (or acceleration), angle, velocity and dis-
placement, respectively.

3. Fast design of the QP-based optimal
trajectory

The LQR-based washout filter in Section 2 gener-
ates filtered trgjectories for the smulator only after
the filter is designed with the corresponding weights
Q, R and R, . Asaresult, it is adso checked after
the filter design whether the designed (or filtered)
trgectory satisfies the smulator congraints or not.
Despite iterative weighting-tunning, it is inevitable
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that the resulting washout filter be conservative, i.e.,
does not fully utilize the smulator capability. Of
course, when a motion smulator alows interactive
ride through devices like ajoystick, the washout filter
must compute the filtered trgjectory during the simu-
lator run with a pre-designed filter in order to reduce
the computational complexity, which naturaly cals
for a conservative washout filter. Yet, in many appli-
cations where the trgjectory is given a priori, it is
possible to design a washout filter or afiltered trgjec-
tory that better utilizes the simulator capability and
consequently reduces the sensation error to lower
leve. In this section, an algorithm based on QP is
proposed to generate such atrgjectory while explicitly
taking into account the smulator congtraints a the
stage of problem formulation. Although its applicabil-
ity is dightly limited, the proposed approach ddlivers
better performance than the LQR-based one when the
trgjectory isgiven a priori.

3.1 Optimal trajectory design via constrained QP

This subsection begins with reformulating the op-
timization problem Eg. (10) in discrete time. The
justification comes from two accounts:

1. When atrgectory is given a priori, it is generdly
described and stored in discrete time.

2. The optimization problem in discrete time renders
arather nice numerical solution via QP.

First, sampling
t,=(—1)IN  gives

a the sampling period
ug(k) =ug(tg+ktg)  for
k=01--N. The sampled e(k), &°k),
ay(k), 6°(k), v*(k), andd®(k) may be defined

smilarly. When reformulating Eqg. (10) in discrete
time, the smulator state x, in the cost J is fac-

tored in congtraintsinstead of cost so that the resulting
solution to the optimization problem is ensured to
keep the simulator state within its congtraints. In
terms of the sampled data, Eq. (10) becomes

Find u, (k) thet minimizesthe cost J given by

N
=) €T ()Qe(k)+1] (k)Ruty (k)

=0
abjectto |6

<9‘ ,

& (k)‘ <4 s |6 (k)‘ <6

<.

‘v“ (k)‘ < ad

(1

The main goa of this section is to turn Eq. (11)
into a standard QP such as Eq. (16). Since

e,0%, a3, 65,V and d° may be expressed in
teems of x, and x, in Egs. (8) and (9), These
equations are converted into discrete time in order to
obtain discretetime dynamica models for
e(k), 8% (), as(k), 65 (k),v* (k) and d°(k) . The
input to the system is u (k), while u,(k) is as
sumed to be known a priori. The discrete-time vesti-

bular mode is obtained from Eq. (8) with the sam-
pling period #,, usng a commercia tool, e.g.,

MATLAB command c2d.m [14]. The resulting state
equation for the sensation error in discrete time be-
comes

xp(k+1) = A%, (k) + Bug (k) - Bu,, (k)

(12
e(k) = C% x, (k) + DY ug (k) - D%, ().

Then, stack u,(k), u,(k)and e(k) from 0" sam

pe to N" sample to obtan &, and
i, (€ RAV+4)
e(0) 1, (0) u (0)
where é= e i, = ta®) i = s () and
Q(N) ua (N) us (N)

~ " is used to denote a stack of vectors throughout
this paper. Solving Eq. (12) in discrete time gives an
expressonfor e:
¢ = K@i, -ii,) (13)
0
d xdpd d
where K= cA'B 9
Cd(Ad)N g . .. D¢

The cost J is consequently represented in a quad-
ratic form:

J = &'Que+il Ry,

I (14)
= ! Aii, +Bii, +C

N+
S g A 2x2
whereQ, =diag[Q,-+,Q], QeR""%,
N+1
lis =diag[R, ,R], RERZXZ,
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A=K'QK+R,, B=-2i,"K"QK,

C=i,"K"Ki, and Q,R are the weighting matri-
Ces.

Now, turn to the constraints. The state equation for
the simulator state (4) may be solved to yield [15]

6° (k) = 6° (k- 1) + 6° (k - D)z,
vi(k) =v*(k-1)+ai(k -,
d® (k +1) = d* (k) +v* (k)t, +%a§(k)t52

for k=01---,N+1.

Since 6°(k),v* (k), d* (k) (nottomention 6° (k)
and a(k)) are given assummationsof 6° and af
and double summation of a7, dl of the congtraintsin

Eq. (11) may be expressed in terms of . The re-

sulting constraint equations in Eq. (11) may be turned
into amatrix inequality on i :

Fi,<g (15)
(1 o 000 -0
-1 o l 0 0 0
F=|M [,g2=|g, |\ M=¢t|1 | 0O - )
| AN O3 | I 1 0
[0 1 0 0 - 0 0]
0 0 0 1 0 0
0 0 0 O 0 1 L 0
N= , A= ,
0 -100 0 0 0 L
0 0 0 -1 0 0
|10 0 0 O 0 -1
©og o
3 1 0 0
L:ﬁ 5 10
5 . ,
|(2N-1) (2N -3) e 1
9max amax deX
Amax Vmax :
a=| i | g=| and g3=
Bmax Ormax
Amax Vmax Amax

where I, M, N (€ RANDx2(N+Dy

LeRWADXNVD o 0 and gq (€ RZVHD)

Now, with Eqg. (14) and Eq. (15), Eq. (11) may be
turned into a standard QP which may be efficiently
solved using standard QP solution mthodologies, eg.,
the conjugate gradient (CG) agorithm [11]. The CG
agorithm is chosen in this paper by virtue of its fast
convergence and numerica efficiency. Eq. (11) is
formulated into a QP:

Co ol .
Qzlerllzm!)gle q(u,) = Sls Hiug+c' g

(16)
subject to Fi,<g

where H=K'Q,K+R, and ¢=-2i,'K'Q,K .
The following steps summarize the CG agorithm to
solve a congtrained QP Eq. (17), given H, ¢, F and
g.

Step 1: Set i=0; select theinitial point &© =0, the
residud ¢ andtolerance .

Step 2: Cdculateg©@ = Vg ). If “ g<°>“ <¢, sop,

dseset d©@=—g©,

e 07 400
StepSC culate akz—m.
Sepd: 16 = + g,

Sep 5 g(i+1):Vq(ﬁ§i+l)) If “g(i+1) <¢

and “Fﬁg"ﬂ) - g” <7, stop. Otherwise,
(i+D)T g 7 ()

. g Hd

Sep6: A=

&ep 7 d(i+l) — _g(i+l) +ﬂkd(i)

Step8: Set i=i+1; gotostep 3.

The computational burden in solving a constrained
QP with the aforementioned CG dgorithm is now
asessed. H,C,F are given as inputs to the ago-
rithm. Firg, it takes O(N3) and O(N?) flops to
compute H=K'QK+R, and c , respectively.
Computing F does not involve major computation
since even unwieldy AN may be obtained via in-
dexing instead of computing. The cost in step 2 is
O(N?) flops to compute the gradient (= Hi? +¢)
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since step 2 involves a matrix-vector product
(O(N?)) and vector-vector summation (O(N)). In
step 3, the required number of operationsis O(N?)
flops, O(N) flops to cdculae g®7qd® and
O(N?) flops to compute dVHA®) . Step 4 costs
O(N) flopssinceit is only vector addition. The cost
in step 5 is O(N?) flops to caculate Vq(a!*Y)
and Fal"*V . Step 6 requires O(N?) flops to com-
pute the matrix-vector product as step 3. Findly step
7 takes O(N) flops. For typical examples, the num-
ber of tota iterations in solving Eq. (17) turns out to
be 10~20. In the view of storage requirement, H and
F e ROV D2NHD need  O(N?) storage space
and vectors u?,¢® and 4 require O(N)
bytes. In summary, the CG-based solution to Eq. (17)
costs O(N3) flopsand O(N?) storage space. This
computational load is quite burdensome despite now
readily available computing power since atypicd ride
in amotion simulator requires N =10% ~10°.

3.2 Fast algorithmsfor optimal trajectory design

In the standard solution described in Section 3.1,
the tremendous computational load incurs since the
meatrix-matrix/matrix-vector products are performed
without exploiting the structures of the underlying
meatrices. However, the QP problem Eq. (17) has ma-
trices with specia structures, which are either Toe-
plitz or Toeplitz-derived matrices. It is well-known
that the Toeplitz matrix-vector products can be com-
puted using Fast Fourier Transform (FFT) [16, 17].
Then, it is worth examining each step to see how it
may be sped up.

Firgt, consider the Hessian H =2(K' QK +R,),
which needs to be pre-computed in the CG-based QP
solver in Section 3.1. As previoudly shown, it takes
O(N®) to compute H . However, careful examina-
tion of the CG agorithm in the Section 3.1 indicates
thaa H should not be pre-computed. Since H is
used in matrix-vector products only (see steps 2, 3, 5
and 6 in Section 3.1), it is better to store its element
matrices K,Q, and R, where K is block-

Toeplitz and Q,, R, ae block-diagona. Then

when each of the matrix-vector products involving
H iscomputed, the eement matrix-vector product is

repeatedly computed, which costs only O(N?)

flops. Moreover, the structures of the element matri-
cesin H alow further reduction in computation as
shown below. Now steps 2-6 are investigated in detail.

Consider K, a sub-step in executing steps 2 and
5 that require Hi(" .

D¢ 0 .. 0420

ki< B D0l

_Cd( Ad)N—le ! M.Si)(N)
D“u?(0)

B4 (0) + Dul () 240)

c/ (AN B D (0) + -+ DU ()

There are N+1 blocks in the first column of K
and each bock has 4 eements. If the computation is
performed without utilizing the underlying structure,

it requires O(N?) flops as noted earlier. Introduce
C9B¢, o
c?(AYYN1B? (e R??) for simplicity:

11 2 2
Dd:[kll klzl CdBd:[kll k12:l

new notations for DY,

11 2 2
k31 k3p ka1 ki

kk+2 kk+2
c(adykpd =| M1 a2
kk+2 kk+2
21

22
for k=01---,N-1

In addition, decompose 6 into two vectors &
(eR¥1) and 89 (eRM*1) that consist of its
even and odd eements, respectively, so that
SN =6D2k) ad sD=6D@k+1  for

k=021--,N. i may be factored into ) and
i) in asimilar manner. Then, it can be shown 5"
and ) may be expressed as summations of Toe-
plitz-vector products, respectively:

8 = T80 + 11200, 61 = T8 + Tpp6")

where
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1
B 0 0 By, 0 - 0
2 1 . 2 1
Ry Ry O kip kp 0
EEE O S I
N+L 1 N+1 1
koo Ry kp = ko
1
k0 0 By 0 - 0
K5 Ky 0O k3 Kz 0
T1= kgl k§1 v Tp= kgz kfz
; B N+1 1
N+ 1 k K
1‘21 k21 22 22

The above Toeplitz matrices can be embedded into
the corresponding circulant matrices. Then, since the
circulant matrices are diagonalized by the Fourier
transformation matrices [16, 18], the matrix-vector

product (Kﬁs(i) ) may be carried out using FFT, which
reducestheflop countto O(Nlog, N) [16]. Overal,
it takes O(Nlog, N) flops to caculate Hu, since
Q,.R, are block-diagonal and K’ is aso block-
Toeplitz. The linear cost matrix (C =-2i, 'K’ QK )
may be computed in the same way, so that the result-
ing cost of step 2 becomes O(Nlog, N)

It turns out that the idea of speeding up Kii!”
computation plays a crucia role in speeding up the
CG-based solution methodology in Section 3.1. Note
that the same structure exists in computing Kd® | a
sub-step in executing steps 3 and 6 with i) substi-
tuted for ) . As aresult, steps 2-6 except for step 5
may be executed a O(Nlog, N) flops. Findly,

consider step 5. Since F condsts of sub-matrices
I,M,AN , the computation on each sub-matrix may

be performed separately when calculating Fil™D .
Since N is used to select even-positioned element,
it does not involve any computational cost. Since
I, M, A areblock-Toeplitzand L istruly Toeplitz,

FFT again reduces the total computational complexity
of step5to O(Nlog, N) flops.

Now, turn to the storage requirement. First, con-
sder the Hessan H . Note that it takes O(N?)

storage space to store H . However, since only the
meatrix-vector products need to be computed and
K, Q,, R, are block-Toeplitz and block diagond, it

is enough to store only the first block columns or the

block diagonds of the element matrices. For

K € RZVHD<2 " only the following matrix K, is
stored:
Dd
dpd
Kr = ¢ B ,

cd (Ad)N—le

which requiresonly O(N) bytes. Even smaler stor-
age space is needed for Q, and R, since they
consist of Q and R, both 2x2 matrices. There-
fore, the whole required storage spacein steps 2, 3, 5
and6is O(N) bytes. In step 5, the storage space for
F can be reduced to O(N) bytes because M, A,
and L ae block-Toeplitz and I is diagona.
Overdl, the proposed fast algorithm requires only
O(Nlog, N) flops and O(N) dorage space. In
summary, Table 1 compares the computationa loads
of the existing agorithm in Section 3.1 and the fast
agorithm in Section 3.2,

In atypica ride that spans 300 seconds at the sam-
pling rate 100Hz, N becomes 30000 and the required
flop counts are on the order of 10° in the proposed
fast agorithm. Flops counts are drastically reduced
compared to those in the exigting agorithm, which is
on the order of 10'%. Since typically it takes eight
bytes to store adouble precision real number by |EEE,
floating-point standard [10], the required storage in
the fast agorithm is on the order of mega-bytes in-
stead of giga-bytes in the existing agorithm. Such
reduction in flop counts and storage space allows
generating optimal trgjectories for extremely long

rides, e.g., N=108.

Table 1. Comparison of the computational loads for the exist-

ing and and proposed a gorithms.
Flop counts Storage space(bytes)

Steps | Exigting Proposed Existing | Proposed
Pre-step O(N3) Unnecessary | O(N 2) Unnecessary

2

. O(N?) |O(Nlog, N) | O(N?) | O(N)

5 2 2

s O(N©) |O(Nlog, N) | O(N©) O(N)
Tod | O(N®) |O(Nlog, N) | O(N?) |  O(N)
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Before proceeding, it must be noted that the pro-
posed QP-based trgectory design methodology is
primarily applicable to the cases with the trgectory
given a priori and has limitations when the interactive
ride is desired. Yet, with the advent of the numeri-
caly efficient implementation developed in this sub-
section, the QP-based trgjectory design methodology
may be used to generate the filtered trgjectory even
without a predetermined trgjectory. By assuming a
finite window (horizon), a pseudo-optimal trgjectory
may be obtained over the finite window. Whenever
the trgectory is changed by the user (or rider), the
filtered trgectory is re-computed and updated. Al-
though not optima in any sense, the resulting filtered
trgectory has potentia to utilize the smulator con-
straintsto great extent.

4. Performance analasis on the Eclipse-11
motion simulator

4.1 Eclipse-Il motion simulator

A motion simulator consists of an audio system to
generate sounds, a visua system to display images,
and a motion base system to generate movement ac-
cording to motion cues. Most conventional simulators

adopt the Stewart platform as the motion base [18-20].

The Stewart platform is a sx degrees-of-freedom
parallel mechanism that enables both trandational and
rotational motions [9, 20]. However, such motions as
the 360-degree overturn are impossible in the Stewart
platform, because the platform can only tilt as much
as +20-30 degrees. That is, it cannot reproduce the
overturn motion of the aircraft or the 360-degree spin
of the roller coaster. A novel six degrees-of-freedom
parallel mechanism architecture, which is called the
Eclipse-11, has been designed for the motion base of a
motion smulator [9, 10]. Fig. 2 shows the Eclipse-1l
mechanism and an example of its rotational motion
capability [9]. Since the Eclipse-Il has no limitation
on its rotationa motion, it is possible to develop a
more realistic and higher fidelity simulator by adopt-
ing the Eclipse-1l mechanism as the motion base of a
flight simulator or aroller coaster motion simulator.
Despite these merits, the Eclipse-Il motion simula-
tor has a small workspace especially in its longitudi-
nal motion, which limits its capability of reproducing
the specific force sensation. In this respect, the
Eclipse-ll motion smulator brings up quite a chal-
lenging task of optimal-trgjectory design. In the fol-
lowing subsection, the novel trajectory design
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Fig. 2. Eclipse-1l mechanism and its 360-degree continuous
rotational motions.

approach proposed in Section 3 is applied to generate
optimal trgjectories for the Eclipse-Il motion simula
tor.

4.2 Performance analysis

The major contributions of this paper are two-fold:

1. A novel approach is proposed to generate optimal
trgjectories for a motion smulator based on the
constrained QP.

2. A fagt agorithm is developed to solve the con-
grained QP by exploiting the Toeplitz structures of
the underlying matrices.

The performance analysisin this section focuses on
the first item after mentioning that the fast algorithm
in Section 3.2 is verified to be equivaent to the stan-
dard onein Section 3.1 in terms of resulting solutions.
Therefore, a digtinction between two agorithmsis not
made throughout this section. The performance of the
proposed agorithm is then benchmarked againgt only
the LQR-based washout agorithm by Telban and
Cardullo [8] among others, noting that the LQR-
based washout agorithm outperforms other existing
ones by generating filtered trgjectories in the most
systematic and accountable manner. Since it is the
explicit formulation of the smulator state x, as

congraints into the optimization problem that gives
the edge to the QP-based agorithm over the LQR-
based one, specid attention must be paid to how the
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two agorithms handle the congtraintson x; aswell

as the sensation error when comparing performance.

During the performance analysis, both agorithms
use the same values for physicd parametersin Eq. (1)
and Eq. (3) and the trandationa break frequency
unless mentioned otherwise [8, 12]. The spatia and
dynamica constraints on the Eclipse- |1 motion simu-
lator are given as

® theradiusof theworkspacecylinder  37.2 mm
® theheight of theworkspacecylinder ~ 78.6 mm
® maximum linear velocity 0.2nm/s
® maximum linear acceleration  0.1g or 0.98m/s®
® maximum angular rate 2radls

where the workspace of Eclipse-ll is described as a
cylinder for convenience [11, 21]. It must be noted
that the version of the Eclipse-ll motion ssimulation
under consderation is a working sample of the full-
fledged one (built for proof of concept) and has poor
spatial and dynamica capabilities for a motion smu-
lator. Ironically, such limited capabilities make the
problem of designing optimal trgjectories more chal-
lenging and the performance gap between different
algorithms more pronounced. Another point worth
mentioning in regard to the condraints is that the
workspace of the working sample has reatively
smaller laterd span than the vertica one.

The smulation studies are primarily conducted on
the longitudina response of angular velocity and
linear acceleration (or specific force) to the pitch/
surge motions (extensions to other motions are rather
trivial). Numerous trgjectories have been used to
compare the performances of the LQR- and QP-based
algorithms. Despite comparable performances in a
few occasions, the QP-based agorithm consistently
show superior performance in most trgectories.
Whenever a trgjectory requires the simulator to push
the limits of its capabilities, the performance gap be-
tween the two agorithms becomes obvious. This
paper presents detailed examinations on three repre-
sentative trgjectories for terseness and clarity: doublet
pitch, linear acceleration, and smultaneous applica-
tion of these two input trgectories. The three input
trgjectories span over 4 seconds. The sample rate of
thetrgjectoriesis chosen to be 100Hz to alow smooth
transition from sample to sample. For each input tra:
jectory, the LQR- and QP-based agorithms compute
the optimized angular velocity (6°) and linear accel-

eration (a3 ). Since the sensation error is of utmost
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interest, the raw data 6 and a, are processed with

the vestibular model Eq. (1) and Eqg. (3) to yield the
sensed angular velocity ¢ and specific force a, . It

is worth noting that LQR-based agorithm requires
repeated weight (Q, R, and R, ) tuning in order to
generate the results presented here while the QP-
based one produces the results in one-shot. It should
be noted that al conditions on the smulation are in-
tended to validate the capability of the proposed QP-
based approach to fully utilize the workspace of the
simulator and that they exceed the constraints on the
simulator.

Firgt, adoublet pitch is examined as an input trgjec-
tory, which has the maximum magnitude of 3 rad/s.
Therefore, the corresponding input force consists of
only angular velocity term without any linear accel-
eration as shown in Fig. 3 (8 and (b), respectively.
Note that the maximum magnitude exceeds the simu-
lator constraint on the angular rate 2 rad/s. Fig. 3 (a)
shows that the input angular velocity to the simulator
goes off its congtraint between 1 and 2 seconds. Both
the LQR- and QP-based algorithms satisfy the con-
straint by keeping the optimized angular velocity
below 2 rad/s, as expected. Other than that, the opti-
mized trgjectories of angular velocities and linear
accelerations from the two agorithms differ qualita-
tively to great extent. The LQR-based algorithm sim-
ply reduces the magnitude of the smulator States,
which results in the scae-down angular velocity pro-
file. On the other hand, the QP-based agorithm takes
full advantage of the allowable range of the angular
velocity by 1) reproducing the angular velocity until it
saturates, 2) keeping it at the maximum once it satu-
rates 3) shaking theinduced linear acceleration (Fig. 3
(b)) smultaneoudly to reject the effect of the saturated
6° . As aresult, the sensed angular velocity ¢ and
sensed specific force a, from the QP-based ago-
rithm track the corresponding ¢ and a, from the
input trgjectory much better than the ones from the
L QR-based agorithm as shown in Figs. 3 (c) and (d).
The QP-based agorithm truly minimizes the sensa-
tion error better although the LQR-based one pro-
duces the sensed ¢ and a, whose shapes only
resemble the ones from the input trgjectory closdly. It
is noteworthy that the better-coordinated effort be-
tween the rotational and trandational motions has
hel ped to further reduce the sensation error in the QP-
based approach. In other words, athough the apparent
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Fig. 3. Comparison of LQR- and QP-based trajectories to
pitch input; (8) angular velocities, (b) linear accelerations, (c)
sensed angular velocities, (d) sensed specific forces.

pattern of the linear acceleration in Fig. 3 (b) does not
resemble that of the real motion, the rotational motion
effectively compensates for the discrepancy in the
linear motion by virtue of the coupling between the
two motions (as manifested by Eq. (4)). Overdl, the
explicit formulation of the simulator state x; as
constraints provides clear performance improvement
in the QP-based approach over the LQR-based coun-
terpart. Moreover, the QP-based approach achieves
such performance improvement without iterative
weight tuning (necessary in the LQR-based approach

inorder tokeep x, withinthe simulator constraints).

Next, consider the linear acceleration as an input
trgjectory without angular velocity shown in Fig. 4 (a)
and (b). The linear acceleration is increased to 1.0
m/s till 3 seconds and kept at the same level after-
ward. Considering that the ssmulator constraint on
linear acceleration is 0.98 m/<?, the current input tra-
jectory aso pushes the simulator to exceed its con-
straints. Recall that the working sample of the
Eclipse-1l motion smulator has a severe limitation on
trandation along the longitudinal direction in its
workspace, which makes it impossible to directly
realize the linear acceleration with high fiddlity. Such
an apparent impasse is circumvented by judicious
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Fig. 4. Comparison of LQR- and QP-based trajectories to
surge input; (a) angular velocities, (b) linear accelerations, (c)
sensed angular velocities, (d) sensed specific forces.

utilization of the human vestibular system, i.e., credt-
ing the sensed specific force by tilting the motion
platform. Figs. 4 (a) and (b) manifest the role of the
crossover path, where the rotational motion helps to
realize the trandational mation in both LQR- and QP-
based approaches. Note that the level of the angular
velocity is very low in Fig. 4 (3), which prevents the
pilot or rider from experiencing motion miscue, i.e.,
rotational motion instead of trandation motion. Also,
note that both L QR- and QP-based approaches do not
push the simulator to its linear acceleration limit due
mainly to its workspace congraints. In other words,
what determines the limit is not acceleration, but dis-
placement. Although Fig. 4 (c) displays a dight mo-
tion miscue in terms of sensed angular velocity (spe-
cid atention must be paid to the small magnitude
along the y-axisin Figs. 4 (a) and (c), Fig. 4 (d) sup-
ports that the gain in sensed specific force outweighs
the negligible motion miscue. It is clear that the QP-
based approach outperforms the LQR-based one as
far asthe sensation error is concerned. Again, the QP-
based approach reproduces the sensed specific force
too close to digtinguish from the one from the input
trgjectory while the LQR-based one is content with a
trgjectory that resembles in shape but leads to signifi-
cant sensation error.
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Fig. 5. Comparison of LQR- and QP-based trajectories to
pitch input/ surge input; (a) angular velocities, (b) linear
accelerations, (c) sensed angular velocities, (d) sensed spe-
cific forces.

Finally, the doublet pitch in Fig. 3 (a) and the linear
acceleration in Fig. 4 (a) are exerted smultaneoudy
as an input trgjectory. Similar interpretations from the
previous two cases may be made in Fig. 5. The QP-
based approach generates a trgjectory that results in
much smaller sensation errors in the sensed angular
velocity and specific force. In other words, even with
the combined motion as an input trgjectory, the trend
in the previous two cases continues. The performance
analysis presented in this section clearly demonstrates
that the proposed QP-based algorithm is capable of
generating optimal trgjectories in a systematic, ac-
countable and intuitive manner, not to mention its
blazingly fast implementation.

5. Concluding remarks

A novel methodology of generating an optimal tra-
jectory for a motion simulator is developed that ex-
plicitly takes into account, and thereby even explaits,
the smulator congtraints. Building upon the existing
approach based on the LQR theory, the proposed
algorithm tries to minimize the human sensation error
while ensuring the simulator stays within its con-
straints. It turns out that when the trgjectory isgiven a
priori, the problem of computing the optimal trajec-
tory can be recast into a constrained QP. Although it

may be readily solved by using now commercialy
available tools when the trgjectory is not too long, the
congtrained QP cdlls for a fast agorithm that runs
faster with less storage space. By taking advantage of
the Toeplitz structures of the underlying matrices, an
orders-of-magnitude faster algorithm is obtained that
requires much less storage space. The viability of the
proposed dgorithm is tested on the Eclipse-Il motion
simulator. The simulation results show that the pro-
posed QP-based agorithm outperforms the existing
LQR-based one mainly in three accounts. small sen-
sation error, full utilization of the workspace and ma-
chine capacity, and no need for iterative weight-
tuning. The proposed agorithm has been successfully
used to generate optimal trgjectories for the Eclipse-|
motion simulator a Seoul National University in
Korea. Overdl, the following practica scheme is
proposed while weighing the performance and com-
plexity together: in normal situations, the conven-
tional LQR-based approach should be taken by virtue
of its smplicity and reasonable performance, and in
other situations where certain trgectories violate the
motion limit of the smulator, the LQR-based ap-
proach should be switched to the QP-based one capa-
ble of effectively handling severe condraints as
shown in this paper.
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