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Abstract 

 
The main difficulty in realizing a motion simulator comes from the constraints on its workspace. The so-called 

washout filter prevents a simulator from being driven to go off its pre-determined boundaries and generate excessive 
torques. By noting that the existing washout filters are conservative and more aggressive motions may be accommo-
dated, this paper presents a novel approach that fully exploits the simulator workspace and thereby reproduces the real-
world sensations with high fidelity. The washout filter converts the real-world input trajectory as a realizable one that 
satisfies the spatial and dynamic constraints while minimizing the sensation error and fidelity between the motions 
experienced in the real world and on the motion simulator. The control objective is to reduce the computational burdens 
by using the QP algorithm. The proposed approach formulates the task of designing a washout filter as a quadratic 
programming (QP). The direct approach to the solution of the QP often results in a computational burden that amounts 
to 3( )O N  flops and 2( )O N  storage space ( 4 510 ~ 10N = , typically). By judiciously exploiting the Toeplitz struc-
tures of the underlying matrices, an orders-of-magnitude faster algorithm is obtained to reduce the computational bur-
dens to 2( log )O N N  flops and ( )O N  storage space. The extensive simulation studies on the Eclipse-II motion 
simulator at Seoul National University assure that the QP-based fast algorithm outperforms the existing ones in repro-
ducing the real-world sensations.  
 
Keywords: Motion simulator; Washout filter; Workspace; Linear quadratic regulator (LQR); Quadratic programming (QP); Toeplitz; 

FFT; Eclipse-II  
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1. Introduction 

For last thirty years, numerous types of motion 
simulators have been developed to serve different 
needs. Although pilots and crews have been their 
primary beneficiaries, the motion simulators have 
been steadily expanding their presences in novel ap-
plications such as prototype testing, human behavior 
study, etc. [1]. Recently, the motion simulators have 
pioneered their territory into the amusement park to 
replace the bulky and costly rides [2]. However, the 
current amusement simulators focus on the visual and 
audio systems rather than precise reproduction of 
motions [3]. As a result, the amusement industry has 
yet to observe a full-fledged motion simulator that 

provides satisfactory motion cues.  
The limited workspace of a motion simulator does 

not allow direct duplication of the real-world motion 
on the simulator platform, which naturally prompts 
the development of the washout filter (whose name 
originates from the fact that one of its functions is to 
“wash out” the position of the simulator back to its 
neutral position). The washout filter converts the real-
world motion into the realizable motion on the simu-
lator while minimizing the sensational difference 
between the real-world and simulated motions [4]. 
Among many ways of designing washout filters, the 
so-called classical washout algorithm is most widely 
accepted by virtue of its simplicity and intuitiveness 
[1]. Although it essentially provides high-pass filter-
ing of linear acceleration and angular rate, the classi-
cal washout algorithm also realizes the sustained (low 
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frequency) specific force cue (linear acceleration) by 
tilting the motion platform, while exploiting the oto-
lith system’s inability to distinguish between pitch 
motion and longitudinal specific force. Despite its 
reasonable performance, the algorithm still has to rely 
on manual tuning of fixed gain parameters [5, 6]. 
Then emerge adaptive algorithms that continuously 
update the gains in an effort to minimize the motion 
errors and the magnitudes of the simulator states [7]. 
Yet, adaptive algorithms generate some false motion 
cues. In order to overcome the shortcomings of the 
classical and adaptive algorithms, a rigorous frame-
work is proposed based on the linear quadratic regula-
tor (LQR) theory [8]. While explicitly considering the 
human vestibular system, the LQR-based approach 
factors sensation error, the simulation state, and the 
command trajectory into the cost function and solves 
the resulting optimization problem using commer-
cially available tools [8]. 

Despite its remarkable success, the LQR-based 
washout filter still leaves room for further improve-
ment on two accounts: the design procedure is itera-
tive and the solution is rather conservative. In other 
words, it does not take full advantage of the simulator 
workspace and other constraints since the design pro-
cedure takes into account the target trajectory only 
after one-iteration is completed [8]. These two draw-
backs naturally call for an algorithm that explicitly 
takes into account the simulator constraints at the 
stage of the problem formulation and non-iteratively 
finds an optimal solution that utilizes the simulator 
capability to full extent. When the simulator trajec-
tory is given a priori, the constrained quadratic pro-
gramming (QP) provides a mathematical foundation 
for such an algorithm. The simulator constraints such 
as workspace boundary, torque limits etc., are fac-
tored into linear matrix inequalities while the sensa-
tion error becomes a quadratic cost function. 

Despite the excellent performance and clear advan-
tages over the existing approaches, the proposed algo-
rithm suffers from a huge computational burden that 
does not come into the picture as long as the problem 
size is small. The conventional solution to the optimi-
zation problem (QP) requires 3( )O N  flops and 

2( )O N  storage space, where N  is the number 
dependent upon simulation or ride duration. Consid-
ering that typical applications require N  ranging 
from 410  to 510 , the proposed algorithm must 
overcome the apparent cul-de-sac in order to be 
commercially viable. Direct solution of the con-

strained QP involves constructing matrices for the 
quadratic cost and computing several matrix-vector 
products, which are largely responsible for huge 
computational burden. By judiciously exploiting the 
structures of the underlying matrices, it is shown that 
an orders-of-magnitude faster implementation is pos-
sible with a much less storage requirement. The Toe-
plitz structure (when computing the cost matrices and 
matrix-vector products) allows such time and storage 
savings. 

Extensive simulation studies are conducted to test 
the viability of the proposed algorithm with the 
Eclipse-II motion simulator which allows the full-
fledged 6 degrees-of-freedom motions, i.e., infinite 
rotations as well as finite translations [9, 10]. For 
smooth trajectories that do not require violating the 
simulator constraints, two approaches based on the 
LQR and QP produce similar results. However, for 
those trajectories that push the limits of the simulator 
constraints, the QP-based approach displays its clear 
edge over the LQR-based counterpart in terms of 
sensation errors. 

This paper is organized as follows. Section 2 de-
scribes the LQR-based washout filter. Section 3 
shows how the problem of finding an optimal trajec-
tory can be recast into a constrained QP. Section 3 
also derives an orders-of-magnitude faster algorithm 
for solving the constrained QP. After briefly explain-
ing the Eclipse-II motion simulator, Section 4 pre-
sents the results of simulation studies to examine the 
performance of the proposed algorithm, which proves 
its viability in the real-world applications.   
 
2. LQR-based washout filter 

In this section, the washout filter design methodol-
ogy based on the LQR theory is briefly summarized 
[8], which serves as a foundation for the QP-based 
design of an optimal trajectory in Section 3. Fig. 1 
shows the problem structure for an optimal washout 
filter design, adopted throughout this paper. The main 
idea of the LQR-based washout filter design is to find 
a linear transfer matrix W(s) that minimizes a certain 
quadratic cost involving the sensation error e  and 
the simulator input su  without violating the simula-
tor constraints. The resulting filtering equation is 

( ) ( ) ( )U s s U ss a= W  where ( )U sa and ( )sU s  are 
the Laplace transforms of the actual and the washed-
out (filtered) trajectories, respectively. Although the 
algorithms are developed and tested along the longi 
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Fig. 1. Problem structure for an optimal washout filter. 
 
tudinal axis only (pitch and surge) throughout this 
paper, they can be readily generalized to include other 
axes. 

The LQR-based washout filter design begins with a 
mathematical model of the human vestibular system. 
Assume that the input u  to the vestibular system 
consists of the angular rate θ&  and the specific force 

xa  so that 
T

xu aθ⎡ ⎤= ⎣ ⎦
& . Then, the sensed rota-

tional motion q̂  (pitch) is given by the mathematical 
model of the semicircular canals: 
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Lτ is time constant with the additional lead compo-
nent. The term sG  defines the static sensitivity in 
terms of afferent firing rate per unit of acceleration. [8, 
11, 12]. Eq. (1) may be written in the state space 
equation as 
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The sensed specific force ˆxa  is related to the in-

put specific force xa  by the otolith model: 
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where 0 0 0 1, , , andG A B B  are physical constants [8, 
12]. The input specific force xa  is assumed to be in 
the linear combination of three components like 

 

x x sza = f + gθ - R θ&&                 (4) 

 
where szR  is the radius from the motion platform 
centroid to the pilot’s head. The first term denotes 
the acceleration from a linear motion, the second 
term stems from the gravitational force due to the 
tilting motion and the third term accounts for the 
inertia force from the angular acceleration. Eq. 
(3) may be transformed into the Laplace domain: 
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With Eq. (5), the sensed specific force in Eq. (3) is 
recast into the following form 
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which is written in the state equation as 
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The vestibular model Eq. (2) and Eq. (7) may be 

combined and transformed into the following state-
space description [13]: 
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Denoting the vestibular system states from the ac-

tual ride and the simulator as ax  and sx  and defin-
ing the corresponding state error ex  as 

e s ax x x−�  yields the following state-space de-
scription for the sensation error e : 
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Ts s
s xu aθ⎡ ⎤= ⎣ ⎦

& . 

In addition to the sensation error, the washout filter 
design must take into account the simulator state dx , 
which is needed to guarantee that the simulator does 
not violate its constraints. Define the simulator state 

dx  as 
T

3 2s s s s
x x xa dt a dt a dt θ⎡ ⎤

⎢ ⎥⎣ ⎦∫∫∫ ∫∫ ∫ , where s
xa  

and sθ  are the specific force and angular rate in the 
simulator, respectively. Then, the dynamics of the 
simulator state may be given by  
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Now, equipped with the dynamic models Eqs. (8) 
and (9) for sensation error and simulator state, the 
problem of designing an optimal washout filter is cast 
into the framework of the LQR theory [8]:  
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where 0 1[ , ]t t  is the simulator ride duration (or 
simulation time), ,Q R  and dR  are the weighting 
matrices. It is well-known that the solution to the 
above optimization problem may be found by solving 
a Riccati equation with a commercial package, e.g. 
MATLAB [13, 14], which results in the transfer ma-
trix ( )sW . In practice, the procedure of designing an 
optimal washout filter based on the LQR theory still 
requires a few iterations. The weighting matrices 

,Q R  and dR  are first determined and the corre-
sponding filter ( )sW  is found, which generates su  
from au . The procedure is iterated until su  satisfies 
all the simulator constraints: 
 

max ,max max

s
max max 0 1

( ) , ( ) , ( ) ,

( ) , and ( ) for [ , ]

s s s s s s
x x

s s s

t a t a t

v t v d t d t t t

θ θ θ θ≤ ≤ ≤

≤ ≤ ∈

& &

 

 
where s

max ,max max max max, , , , ands s s s
xa v dθ θ& are 

maximum allowable simulator angular velocity, spe-
cific force (or acceleration), angle, velocity and dis-
placement, respectively. 

  
3. Fast design of the QP-based optimal  

trajectory 

The LQR-based washout filter in Section 2 gener-
ates filtered trajectories for the simulator only after 
the filter is designed with the corresponding weights 

,Q R  and dR . As a result, it is also checked after 
the filter design whether the designed (or filtered) 
trajectory satisfies the simulator constraints or not. 
Despite iterative weighting-tunning, it is inevitable 
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that the resulting washout filter be conservative, i.e., 
does not fully utilize the simulator capability. Of 
course, when a motion simulator allows interactive 
ride through devices like a joystick, the washout filter 
must compute the filtered trajectory during the simu-
lator run with a pre-designed filter in order to reduce 
the computational complexity, which naturally calls 
for a conservative washout filter. Yet, in many appli-
cations where the trajectory is given a priori, it is 
possible to design a washout filter or a filtered trajec-
tory that better utilizes the simulator capability and 
consequently reduces the sensation error to lower 
level. In this section, an algorithm based on QP is 
proposed to generate such a trajectory while explicitly 
taking into account the simulator constraints at the 
stage of problem formulation. Although its applicabil-
ity is slightly limited, the proposed approach delivers 
better performance than the LQR-based one when the 
trajectory is given a priori.  

 
3.1 Optimal trajectory design via constrained QP 

This subsection begins with reformulating the op-
timization problem Eq. (10) in discrete time. The 
justification comes from two accounts: 
 
1. When a trajectory is given a priori, it is generally 

described and stored in discrete time. 
2. The optimization problem in discrete time renders 

a rather nice numerical solution via QP. 
 
First, sampling su  at the sampling period 

1 0( )/st t t N= −  gives ( ) ( )0u k u t ktss s= +  for 

0,1, , .k N= L  The sampled ( ),e k ( ),s kθ&  

( ),sa kx ( ),s kθ ( ),sv k and ( )sd k  may be defined 
similarly. When reformulating Eq. (10) in discrete 
time, the simulator state dx  in the cost J  is fac-
tored in constraints instead of cost so that the resulting 
solution to the optimization problem is ensured to 
keep the simulator state within its constraints. In 
terms of the sampled data, Eq. (10) becomes 
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The main goal of this section is to turn Eq. (11) 
into a standard QP such as Eq. (16). Since 

, , , ,s s s se a vxθ θ&  and sd  may be expressed in 
terms of ex  and dx  in Eqs. (8) and (9), These 
equations are converted into discrete time in order to 
obtain discrete-time dynamical models for 

( ), ( ), ( ), ( ), ( )s s s se k k a k k v kxθ θ&  and ( )sd k . The 
input to the system is ( )su k , while ( )au k  is as-
sumed to be known a priori. The discrete-time vesti-
bular model is obtained from Eq. (8) with the sam-
pling period st , using a commercial tool, e.g., 
MATLAB command c2d.m [14]. The resulting state 
equation for the sensation error in discrete time be-
comes 
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‘∼ ’ is used to denote a stack of vectors throughout 
this paper. Solving Eq. (12) in discrete time gives an 
expression for e% :  
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The cost J  is consequently represented in a quad-
ratic form: 
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,T
e s= +A K Q K R% % % 2 ,T T

a eu= −B K Q K%% %  
T T

a au u=C K K% % %  and ,Q R  are the weighting matri-
ces. 
Now, turn to the constraints. The state equation for 
the simulator state (4) may be solved to yield [15] 

 
( ) ( -1) ( -1) ,s s s

sk k k tθ θ θ= + &  

( ) ( -1) ( -1) ,s s s
x sv k v k a k t= +  

21( +1) ( ) ( ) ( )
2

s s s s
s x sd k d k v k t a k t= + +  

 for 0,1, , 1k N= +L . 
 

Since ( ), ( ), ( )s s sk v k d kθ  (not to mention ( )s kθ&  

and ( )s
xa k ) are given as summations of sθ&  and s

xa  
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Eq. (11) may be expressed in terms of su% . The re-
sulting constraint equations in Eq. (11) may be turned 
into a matrix inequality on su% : 
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where 2( 1) 2( 1), , ( ),N NI M N + × +∈\   
( 1) ( 1) ,N NL + × +∈\  1 2,g g  and 2( 1)

3 ( )Ng +∈\ .  
Now, with Eq. (14) and Eq. (15), Eq. (11) may be 
turned into a standard QP which may be efficiently 
solved using standard QP solution mthodologies, e.g., 
the conjugate gradient (CG) algorithm [11]. The CG 
algorithm is chosen in this paper by virtue of its fast 
convergence and numerical efficiency. Eq. (11) is 
formulated into a QP:  

 

2( 1) 1

1( )
2

   

minimize

subject to
N

s

T T
s s s s

u R

s

q u u u c u

u g,

+ ×∈
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≤

H

F

%
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% %

        (16)              

 
where T

e s= +H K Q K R% %  and 2 T T
a euc = − K Q K%% . 

The following steps summarize the CG algorithm to 
solve a constrained QP Eq. (17), given , ,cH F  and 
g% . 
 
Step 1: Set 0i = ; select the initial point (0) 0u =% , the 
residual ς  and tolerance τ . 

Step 2: Calculate (0) (0)( )sg q u= ∇ % . If (0)g ς≤ , stop, 

else set (0) (0)d g= − . 

Step 3: Calculate 
( ) ( )

( ) ( )

i T i

k i i
g d
d d

α = −
H

. 

Step 4: ( 1) ( ) ( )i i i
s s ku u dα+ = + . 

Step 5: ( 1) ( +1)( )i+ i
sg q u= ∇ % . If ( 1)ig ς+ ≤  

and ( +1)i
su g τ− ≤F % % , stop. Otherwise, 

Step 6: 
( +1) ( )

( ) ( )

i T i

k i i
g d

d d
β = H

H
. 

Step 7: ( 1) ( +1) ( )i i i
kd g dβ+ = − +  

Step 8: Set 1i = i + ; go to step 3. 
 
The computational burden in solving a constrained 

QP with the aforementioned CG algorithm is now 
assessed. , ,cH F  are given as inputs to the algo-

rithm. First, it takes 3( )O N  and 2( )O N  flops to 

compute T
e s= +H K Q K R% %  and c , respectively. 

Computing F  does not involve major computation 
since even unwieldy ΛN  may be obtained via in-
dexing instead of computing. The cost in step 2 is 

2( )O N  flops to compute the gradient ( (0)
su c= +H % ) 
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since step 2 involves a matrix-vector product 
( 2( )O N ) and vector-vector summation ( ( )O N ). In 

step 3, the required number of operations is 2( )O N  

flops; ( )O N  flops to calculate ( ) ( )i T ig d  and 
2( )O N  flops to compute ( ) ( )i id dH . Step 4 costs 

( )O N  flops since it is only vector addition. The cost 

in step 5 is 2( )O N  flops to calculate ( +1)( )i
sq u∇ %  

and ( +1)i
suF % . Step 6 requires 2( )O N  flops to com-

pute the matrix-vector product as step 3. Finally step 
7 takes ( )O N  flops. For typical examples, the num-
ber of total iterations in solving Eq. (17) turns out to 
be 10~20. In the view of storage requirement, H and 

5( 1) 2( 1)N NF + × +∈\  need 2( )O N  storage space 

and vectors ( ) ( ),i i
su g and ( )id  require ( )O N  

bytes. In summary, the CG-based solution to Eq. (17) 
costs 3( )O N  flops and 2( )O N  storage space. This 
computational load is quite burdensome despite now 
readily available computing power since a typical ride 
in a motion simulator requires 4 510 ~ 10N = . 

 
3.2 Fast algorithms for optimal trajectory design 

In the standard solution described in Section 3.1, 
the tremendous computational load incurs since the 
matrix-matrix/matrix-vector products are performed 
without exploiting the structures of the underlying 
matrices. However, the QP problem Eq. (17) has ma-
trices with special structures, which are either Toe-
plitz or Toeplitz-derived matrices. It is well-known 
that the Toeplitz matrix-vector products can be com-
puted using Fast Fourier Transform (FFT) [16, 17]. 
Then, it is worth examining each step to see how it 
may be sped up.  

First, consider the Hessian 2( )T
e s= +H K Q K R% % , 

which needs to be pre-computed in the CG-based QP 
solver in Section 3.1. As previously shown, it takes 

3( )O N  to compute H . However, careful examina-
tion of the CG algorithm in the Section 3.1 indicates 
that H  should not be pre-computed. Since H  is 
used in matrix-vector products only (see steps 2, 3, 5 
and 6 in Section 3.1), it is better to store its element 
matrices , eK Q%  and sR%  where K  is block-

Toeplitz and ,e sQ R% %  are block-diagonal. Then 
when each of the matrix-vector products involving 
H  is computed, the element matrix-vector product is 

repeatedly computed, which costs only 2( )O N  
flops. Moreover, the structures of the element matri-
ces in H  allow further reduction in computation as 
shown below. Now steps 2-6 are investigated in detail. 
Consider ( )i

suK % , a sub-step in executing steps 2 and 

5 that require ( )i
suH % . 
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There are N+1 blocks in the first column of K  

and each bock has 4 elements. If the computation is 
performed without utilizing the underlying structure, 
it requires 2( )O N  flops as noted earlier. Introduce 

new notations for ,dD  ,d dC B  ,L   
1 2 2( ) ( )d d N dC A B− ×∈\ for simplicity: 

 
1 1 2 2
11 12 11 12
1 1 2 2
21 22 21 22

, , ,d d dk k k k

k k k k

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

D C B L  

+2 +2
11 12

+2 +2
21 22

( )
k k

d d k d
k k

k k

k k

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

C A B  

for 0,1, , 1k N= −L  
 

In addition, decompose ( )iδ  into two vectors ( )i
eδ  

( 1N+∈\ ) and ( )i
oδ  ( 1N+∈\ ) that consist of its 

even and odd elements, respectively, so that 
( )( ) (2 )ii

e kδ δ=  and ( )( ) (2 +1)ii
o kδ δ=  for 

0,1, , .k N= L  ( )i
su%  may be factored into ( )i

s,eu%  and 
( )i
s,ou%  in a similar manner. Then, it can be shown ( )i

eδ  

and ( )i
oδ  may be expressed as summations of Toe-

plitz-vector products, respectively: 
 

( ) ( ) ( ) ( ) ( ) ( )
11 12 21 22,i i i i i i

o o e e o eδ δ δ δ δ δ= + = +T T T T  
 

where  
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The above Toeplitz matrices can be embedded into 

the corresponding circulant matrices. Then, since the 
circulant matrices are diagonalized by the Fourier 
transformation matrices [16, 18], the matrix-vector 
product ( ( )i

suK % ) may be carried out using FFT, which 
reduces the flop count to 2( log )O N N  [16]. Overall, 
it takes 2( log )O N N  flops to calculate suH %  since 

,e sQ R% % are block-diagonal and TK  is also block-

Toeplitz. The linear cost matrix ( 2 T T
a euc = − K Q K%% ) 

may be computed in the same way, so that the result-
ing cost of step 2 becomes 2( log )O N N  

It turns out that the idea of speeding up ( )i
suK %  

computation plays a crucial role in speeding up the 
CG-based solution methodology in Section 3.1. Note 
that the same structure exists in computing ( )idK , a 
sub-step in executing steps 3 and 6 with ( )i

su%  substi-

tuted for ( )id . As a result, steps 2-6 except for step 5 
may be executed at 2( log )O N N  flops. Finally, 
consider step 5. Since F  consists of sub-matrices 

, ,I M ΛN , the computation on each sub-matrix may 

be performed separately when calculating ( +1)i
suF % . 

Since N  is used to select even-positioned element, 
it does not involve any computational cost. Since 

, ,I M Λ  are block-Toeplitz and L  is truly Toeplitz, 
FFT again reduces the total computational complexity 
of step 5 to 2( log )O N N  flops. 

Now, turn to the storage requirement. First, con-
sider the Hessian H . Note that it takes 2( )O N  
storage space to store H . However, since only the 
matrix-vector products need to be computed and 

, ,e sK Q R% %  are block-Toeplitz and block diagonal, it 
is enough to store only the first block columns or the 

block diagonals of the element matrices. For 
2( 1) 2NK + ×∈\ , only the following matrix TK  is 

stored: 
 

1( )

d

d d
T

d d N d

⎡ ⎤
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which requires only ( )O N  bytes. Even smaller stor-
age space is needed for eQ%  and sR%  since they 
consist of Q  and R , both 2 2× matrices. There-
fore, the whole required storage space in steps 2, 3, 5 
and 6 is ( )O N  bytes. In step 5, the storage space for 
F  can be reduced to ( )O N  bytes because , ,M Λ  
and L  are block-Toeplitz and I  is diagonal. 
Overall, the proposed fast algorithm requires only 

2( log )O N N  flops and ( )O N  storage space. In 
summary, Table 1 compares the computational loads 
of the existing algorithm in Section 3.1 and the fast 
algorithm in Section 3.2. 

In a typical ride that spans 300 seconds at the sam-
pling rate 100Hz, N becomes 30000 and the required 
flop counts are on the order of 510  in the proposed 
fast algorithm. Flops counts are drastically reduced 
compared to those in the existing algorithm, which is 
on the order of 1310 . Since typically it takes eight 
bytes to store a double precision real number by IEEE, 
floating-point standard [10], the required storage in 
the fast algorithm is on the order of mega-bytes in-
stead of giga-bytes in the existing algorithm. Such 
reduction in flop counts and storage space allows 
generating optimal trajectories for extremely long 
rides, e.g., 810N = . 

 
Table 1. Comparison of the computational loads for the exist-
ing and and proposed algorithms. 

 Flop counts Storage space(bytes) 

Steps Existing Proposed Existing Proposed 

Pre-step 3( )O N Unnecessary 2( )O N  Unnecessary

2 

3 
2( )O N 2( log )O N N  2( )O N  ( )O N  

5 

6 
2( )O N 2( log )O N N  2( )O N  ( )O N  

Total 3( )O N 2( log )O N N  2( )O N  ( )O N  
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Before proceeding, it must be noted that the pro-
posed QP-based trajectory design methodology is 
primarily applicable to the cases with the trajectory 
given a priori and has limitations when the interactive 
ride is desired. Yet, with the advent of the numeri-
cally efficient implementation developed in this sub-
section, the QP-based trajectory design methodology 
may be used to generate the filtered trajectory even 
without a predetermined trajectory. By assuming a 
finite window (horizon), a pseudo-optimal trajectory 
may be obtained over the finite window. Whenever 
the trajectory is changed by the user (or rider), the 
filtered trajectory is re-computed and updated. Al-
though not optimal in any sense, the resulting filtered 
trajectory has potential to utilize the simulator con-
straints to great extent. 

 
4. Performance analasis on the Eclipse-II  

motion simulator 

4.1 Eclipse-II motion simulator 

A motion simulator consists of an audio system to 
generate sounds, a visual system to display images, 
and a motion base system to generate movement ac-
cording to motion cues. Most conventional simulators 
adopt the Stewart platform as the motion base [18-20]. 
The Stewart platform is a six degrees-of-freedom 
parallel mechanism that enables both translational and 
rotational motions [9, 20]. However, such motions as 
the 360-degree overturn are impossible in the Stewart 
platform, because the platform can only tilt as much 
as ± 20-30 degrees. That is, it cannot reproduce the 
overturn motion of the aircraft or the 360-degree spin 
of the roller coaster. A novel six degrees-of-freedom 
parallel mechanism architecture, which is called the 
Eclipse-II, has been designed for the motion base of a 
motion simulator [9, 10]. Fig. 2 shows the Eclipse-II 
mechanism and an example of its rotational motion 
capability [9]. Since the Eclipse-II has no limitation 
on its rotational motion, it is possible to develop a 
more realistic and higher fidelity simulator by adopt-
ing the Eclipse-II mechanism as the motion base of a 
flight simulator or a roller coaster motion simulator. 

Despite these merits, the Eclipse-II motion simula-
tor has a small workspace especially in its longitudi-
nal motion, which limits its capability of reproducing 
the specific force sensation. In this respect, the 
Eclipse-II motion simulator brings up quite a chal-
lenging task of optimal-trajectory design. In the fol-
lowing subsection, the novel trajectory design  

 
Fig. 2. Eclipse-II mechanism and its 360-degree continuous 
rotational motions. 

 
approach proposed in Section 3 is applied to generate 
optimal trajectories for the Eclipse-II motion simula-
tor. 

 
4.2 Performance analysis 

The major contributions of this paper are two-fold: 
 
1. A novel approach is proposed to generate optimal 

trajectories for a motion simulator based on the 
constrained QP. 

2. A fast algorithm is developed to solve the con-
strained QP by exploiting the Toeplitz structures of 
the underlying matrices. 
 
The performance analysis in this section focuses on 

the first item after mentioning that the fast algorithm 
in Section 3.2 is verified to be equivalent to the stan-
dard one in Section 3.1 in terms of resulting solutions. 
Therefore, a distinction between two algorithms is not 
made throughout this section. The performance of the 
proposed algorithm is then benchmarked against only 
the LQR-based washout algorithm by Telban and 
Cardullo [8] among others, noting that the LQR-
based washout algorithm outperforms other existing 
ones by generating filtered trajectories in the most 
systematic and accountable manner. Since it is the 
explicit formulation of the simulator state dx  as 
constraints into the optimization problem that gives 
the edge to the QP-based algorithm over the LQR-
based one, special attention must be paid to how the 
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two algorithms handle the constraints on dx  as well 
as the sensation error when comparing performance. 

During the performance analysis, both algorithms 
use the same values for physical parameters in Eq. (1) 
and Eq. (3) and the translational break frequency 
unless mentioned otherwise [8, 12]. The spatial and 
dynamical constraints on the Eclipse- II motion simu-
lator are given as 

 
 the radius of the workspace cylinder    37.2 mm 
 the height of the workspace cylinder    78.6 mm 
 maximum linear velocity             0.2 m/s 
 maximum linear acceleration   0.1g or 0.98m/s2 
 maximum angular rate               2 rad/s 
 

where the workspace of Eclipse-II is described as a 
cylinder for convenience [11, 21]. It must be noted 
that the version of the Eclipse-II motion simulation 
under consideration is a working sample of the full-
fledged one (built for proof of concept) and has poor 
spatial and dynamical capabilities for a motion simu-
lator. Ironically, such limited capabilities make the 
problem of designing optimal trajectories more chal-
lenging and the performance gap between different 
algorithms more pronounced. Another point worth 
mentioning in regard to the constraints is that the 
workspace of the working sample has relatively 
smaller lateral span than the vertical one. 

The simulation studies are primarily conducted on 
the longitudinal response of angular velocity and 
linear acceleration (or specific force) to the pitch/ 
surge motions (extensions to other motions are rather 
trivial). Numerous trajectories have been used to 
compare the performances of the LQR- and QP-based 
algorithms. Despite comparable performances in a 
few occasions, the QP-based algorithm consistently 
show superior performance in most trajectories. 
Whenever a trajectory requires the simulator to push 
the limits of its capabilities, the performance gap be-
tween the two algorithms becomes obvious. This 
paper presents detailed examinations on three repre-
sentative trajectories for terseness and clarity: doublet 
pitch, linear acceleration, and simultaneous applica-
tion of these two input trajectories. The three input 
trajectories span over 4 seconds. The sample rate of 
the trajectories is chosen to be 100Hz to allow smooth 
transition from sample to sample. For each input tra-
jectory, the LQR- and QP-based algorithms compute 
the optimized angular velocity ( sθ& ) and linear accel-
eration ( s

xa ). Since the sensation error is of utmost 

interest, the raw data θ&  and xa  are processed with 
the vestibular model Eq. (1) and Eq. (3) to yield the 
sensed angular velocity q̂  and specific force ˆxa . It 
is worth noting that LQR-based algorithm requires 
repeated weight ( , , and dQ R R ) tuning in order to 
generate the results presented here while the QP-
based one produces the results in one-shot. It should 
be noted that all conditions on the simulation are in-
tended to validate the capability of the proposed QP-
based approach to fully utilize the workspace of the 
simulator and that they exceed the constraints on the 
simulator. 

First, a doublet pitch is examined as an input trajec-
tory, which has the maximum magnitude of 3 rad/s. 
Therefore, the corresponding input force consists of 
only angular velocity term without any linear accel-
eration as shown in Fig. 3 (a) and (b), respectively. 
Note that the maximum magnitude exceeds the simu-
lator constraint on the angular rate 2 rad/s. Fig. 3 (a) 
shows that the input angular velocity to the simulator 
goes off its constraint between 1 and 2 seconds. Both 
the LQR- and QP-based algorithms satisfy the con-
straint by keeping the optimized angular velocity 
below 2 rad/s, as expected. Other than that, the opti-
mized trajectories of angular velocities and linear 
accelerations from the two algorithms differ qualita-
tively to great extent. The LQR-based algorithm sim-
ply reduces the magnitude of the simulator states, 
which results in the scale-down angular velocity pro-
file. On the other hand, the QP-based algorithm takes 
full advantage of the allowable range of the angular 
velocity by 1) reproducing the angular velocity until it 
saturates, 2) keeping it at the maximum once it satu-
rates 3) shaking the induced linear acceleration (Fig. 3 
(b)) simultaneously to reject the effect of the saturated 

sθ& . As a result, the sensed angular velocity q̂  and 
sensed specific force ˆxa  from the QP-based algo-
rithm track the corresponding q̂  and ˆxa  from the 
input trajectory much better than the ones from the 
LQR-based algorithm as shown in Figs. 3 (c) and (d). 
The QP-based algorithm truly minimizes the sensa-
tion error better although the LQR-based one pro-
duces the sensed q̂  and ˆxa  whose shapes only 
resemble the ones from the input trajectory closely. It 
is noteworthy that the better-coordinated effort be-
tween the rotational and translational motions has 
helped to further reduce the sensation error in the QP-
based approach. In other words, although the apparent  
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Fig. 3. Comparison of LQR- and QP-based trajectories to 
pitch input; (a) angular velocities, (b) linear accelerations, (c) 
sensed angular velocities, (d) sensed specific forces. 

 
pattern of the linear acceleration in Fig. 3 (b) does not 
resemble that of the real motion, the rotational motion 
effectively compensates for the discrepancy in the 
linear motion by virtue of the coupling between the 
two motions (as manifested by Eq. (4)). Overall, the 
explicit formulation of the simulator state dx  as 
constraints provides clear performance improvement 
in the QP-based approach over the LQR-based coun-
terpart. Moreover, the QP-based approach achieves 
such performance improvement without iterative 
weight tuning (necessary in the LQR-based approach 
in order to keep dx  within the simulator constraints). 

Next, consider the linear acceleration as an input 
trajectory without angular velocity shown in Fig. 4 (a) 
and (b). The linear acceleration is increased to 1.0 
m/s2 till 3 seconds and kept at the same level after-
ward. Considering that the simulator constraint on 
linear acceleration is 0.98 m/s2, the current input tra-
jectory also pushes the simulator to exceed its con-
straints. Recall that the working sample of the 
Eclipse-II motion simulator has a severe limitation on 
translation along the longitudinal direction in its 
workspace, which makes it impossible to directly 
realize the linear acceleration with high fidelity. Such 
an apparent impasse is circumvented by judicious  

 

 

Fig. 4. Comparison of LQR- and QP-based trajectories to 
surge input; (a) angular velocities, (b) linear accelerations, (c) 
sensed angular velocities, (d) sensed specific forces. 

 
utilization of the human vestibular system, i.e., creat-
ing the sensed specific force by tilting the motion 
platform. Figs. 4 (a) and (b) manifest the role of the 
crossover path, where the rotational motion helps to 
realize the translational motion in both LQR- and QP-
based approaches. Note that the level of the angular 
velocity is very low in Fig. 4 (a), which prevents the 
pilot or rider from experiencing motion miscue, i.e., 
rotational motion instead of translation motion. Also, 
note that both LQR- and QP-based approaches do not 
push the simulator to its linear acceleration limit due 
mainly to its workspace constraints. In other words, 
what determines the limit is not acceleration, but dis-
placement. Although Fig. 4 (c) displays a slight mo-
tion miscue in terms of sensed angular velocity (spe-
cial attention must be paid to the small magnitude 
along the y-axis in Figs. 4 (a) and (c), Fig. 4 (d) sup-
ports that the gain in sensed specific force outweighs 
the negligible motion miscue. It is clear that the QP-
based approach outperforms the LQR-based one as 
far as the sensation error is concerned. Again, the QP-
based approach reproduces the sensed specific force 
too close to distinguish from the one from the input 
trajectory while the LQR-based one is content with a 
trajectory that resembles in shape but leads to signifi-
cant sensation error. 
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Fig. 5. Comparison of LQR- and QP-based trajectories to 
pitch input/ surge input; (a) angular velocities, (b) linear 
accelerations, (c) sensed angular velocities, (d) sensed spe-
cific forces. 

 
Finally, the doublet pitch in Fig. 3 (a) and the linear 

acceleration in Fig. 4 (a) are exerted simultaneously 
as an input trajectory. Similar interpretations from the 
previous two cases may be made in Fig. 5. The QP-
based approach generates a trajectory that results in 
much smaller sensation errors in the sensed angular 
velocity and specific force. In other words, even with 
the combined motion as an input trajectory, the trend 
in the previous two cases continues. The performance 
analysis presented in this section clearly demonstrates 
that the proposed QP-based algorithm is capable of 
generating optimal trajectories in a systematic, ac-
countable and intuitive manner, not to mention its 
blazingly fast implementation.  

 
5. Concluding remarks 

A novel methodology of generating an optimal tra-
jectory for a motion simulator is developed that ex-
plicitly takes into account, and thereby even exploits, 
the simulator constraints. Building upon the existing 
approach based on the LQR theory, the proposed 
algorithm tries to minimize the human sensation error 
while ensuring the simulator stays within its con-
straints. It turns out that when the trajectory is given a 
priori, the problem of computing the optimal trajec-
tory can be recast into a constrained QP. Although it 

may be readily solved by using now commercially 
available tools when the trajectory is not too long, the 
constrained QP calls for a fast algorithm that runs 
faster with less storage space. By taking advantage of 
the Toeplitz structures of the underlying matrices, an 
orders-of-magnitude faster algorithm is obtained that 
requires much less storage space. The viability of the 
proposed algorithm is tested on the Eclipse-II motion 
simulator. The simulation results show that the pro-
posed QP-based algorithm outperforms the existing 
LQR-based one mainly in three accounts: small sen-
sation error, full utilization of the workspace and ma-
chine capacity, and no need for iterative weight-
tuning. The proposed algorithm has been successfully 
used to generate optimal trajectories for the Eclipse-II 
motion simulator at Seoul National University in 
Korea. Overall, the following practical scheme is 
proposed while weighing the performance and com-
plexity together: in normal situations, the conven-
tional LQR-based approach should be taken by virtue 
of its simplicity and reasonable performance, and in 
other situations where certain trajectories violate the 
motion limit of the simulator, the LQR-based ap-
proach should be switched to the QP-based one capa-
ble of effectively handling severe constraints as 
shown in this paper. 
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