

Journal of Mechanical Science and Technology 21 (2007) 1973~1985

Journal of

Mechanical
Science and
Technology

Fast design of the QP-based optimal trajectory for a motion simulator

Young Man Cho*, Hwa Soo Kim, Ik Kyu Kim, Jong Jin Woo and Jongwon Kim
School of Mechanical and Aerospace Engineering, Seoul National Univ., Seoul, 151-744, Korea

(Manuscript Received October 16, 2006; Revised August 20, 2007; Accepted August 20, 2007)

--
Abstract

The main difficulty in realizing a motion simulator comes from the constraints on its workspace. The so-called

washout filter prevents a simulator from being driven to go off its pre-determined boundaries and generate excessive
torques. By noting that the existing washout filters are conservative and more aggressive motions may be accommo-
dated, this paper presents a novel approach that fully exploits the simulator workspace and thereby reproduces the real-
world sensations with high fidelity. The washout filter converts the real-world input trajectory as a realizable one that
satisfies the spatial and dynamic constraints while minimizing the sensation error and fidelity between the motions
experienced in the real world and on the motion simulator. The control objective is to reduce the computational burdens
by using the QP algorithm. The proposed approach formulates the task of designing a washout filter as a quadratic
programming (QP). The direct approach to the solution of the QP often results in a computational burden that amounts
to 3()O N flops and 2()O N storage space (4 510 ~ 10N = , typically). By judiciously exploiting the Toeplitz struc-
tures of the underlying matrices, an orders-of-magnitude faster algorithm is obtained to reduce the computational bur-
dens to 2(log)O N N flops and ()O N storage space. The extensive simulation studies on the Eclipse-II motion
simulator at Seoul National University assure that the QP-based fast algorithm outperforms the existing ones in repro-
ducing the real-world sensations.

Keywords: Motion simulator; Washout filter; Workspace; Linear quadratic regulator (LQR); Quadratic programming (QP); Toeplitz;

FFT; Eclipse-II
--

1. Introduction

For last thirty years, numerous types of motion
simulators have been developed to serve different
needs. Although pilots and crews have been their
primary beneficiaries, the motion simulators have
been steadily expanding their presences in novel ap-
plications such as prototype testing, human behavior
study, etc. [1]. Recently, the motion simulators have
pioneered their territory into the amusement park to
replace the bulky and costly rides [2]. However, the
current amusement simulators focus on the visual and
audio systems rather than precise reproduction of
motions [3]. As a result, the amusement industry has
yet to observe a full-fledged motion simulator that

provides satisfactory motion cues.
The limited workspace of a motion simulator does

not allow direct duplication of the real-world motion
on the simulator platform, which naturally prompts
the development of the washout filter (whose name
originates from the fact that one of its functions is to
“wash out” the position of the simulator back to its
neutral position). The washout filter converts the real-
world motion into the realizable motion on the simu-
lator while minimizing the sensational difference
between the real-world and simulated motions [4].
Among many ways of designing washout filters, the
so-called classical washout algorithm is most widely
accepted by virtue of its simplicity and intuitiveness
[1]. Although it essentially provides high-pass filter-
ing of linear acceleration and angular rate, the classi-
cal washout algorithm also realizes the sustained (low

*Corresponding author. Tel.: +82 2 880 1644, Fax.: +82 2 883 1513
E-mail address: ymcho85@snu.ac.kr

1974 Y. M. Cho et al. / Journal of Mechanical Science and Technology 21(2007) 1973~1985

frequency) specific force cue (linear acceleration) by
tilting the motion platform, while exploiting the oto-
lith system’s inability to distinguish between pitch
motion and longitudinal specific force. Despite its
reasonable performance, the algorithm still has to rely
on manual tuning of fixed gain parameters [5, 6].
Then emerge adaptive algorithms that continuously
update the gains in an effort to minimize the motion
errors and the magnitudes of the simulator states [7].
Yet, adaptive algorithms generate some false motion
cues. In order to overcome the shortcomings of the
classical and adaptive algorithms, a rigorous frame-
work is proposed based on the linear quadratic regula-
tor (LQR) theory [8]. While explicitly considering the
human vestibular system, the LQR-based approach
factors sensation error, the simulation state, and the
command trajectory into the cost function and solves
the resulting optimization problem using commer-
cially available tools [8].

Despite its remarkable success, the LQR-based
washout filter still leaves room for further improve-
ment on two accounts: the design procedure is itera-
tive and the solution is rather conservative. In other
words, it does not take full advantage of the simulator
workspace and other constraints since the design pro-
cedure takes into account the target trajectory only
after one-iteration is completed [8]. These two draw-
backs naturally call for an algorithm that explicitly
takes into account the simulator constraints at the
stage of the problem formulation and non-iteratively
finds an optimal solution that utilizes the simulator
capability to full extent. When the simulator trajec-
tory is given a priori, the constrained quadratic pro-
gramming (QP) provides a mathematical foundation
for such an algorithm. The simulator constraints such
as workspace boundary, torque limits etc., are fac-
tored into linear matrix inequalities while the sensa-
tion error becomes a quadratic cost function.

Despite the excellent performance and clear advan-
tages over the existing approaches, the proposed algo-
rithm suffers from a huge computational burden that
does not come into the picture as long as the problem
size is small. The conventional solution to the optimi-
zation problem (QP) requires 3()O N flops and

2()O N storage space, where N is the number
dependent upon simulation or ride duration. Consid-
ering that typical applications require N ranging
from 410 to 510 , the proposed algorithm must
overcome the apparent cul-de-sac in order to be
commercially viable. Direct solution of the con-

strained QP involves constructing matrices for the
quadratic cost and computing several matrix-vector
products, which are largely responsible for huge
computational burden. By judiciously exploiting the
structures of the underlying matrices, it is shown that
an orders-of-magnitude faster implementation is pos-
sible with a much less storage requirement. The Toe-
plitz structure (when computing the cost matrices and
matrix-vector products) allows such time and storage
savings.

Extensive simulation studies are conducted to test
the viability of the proposed algorithm with the
Eclipse-II motion simulator which allows the full-
fledged 6 degrees-of-freedom motions, i.e., infinite
rotations as well as finite translations [9, 10]. For
smooth trajectories that do not require violating the
simulator constraints, two approaches based on the
LQR and QP produce similar results. However, for
those trajectories that push the limits of the simulator
constraints, the QP-based approach displays its clear
edge over the LQR-based counterpart in terms of
sensation errors.

This paper is organized as follows. Section 2 de-
scribes the LQR-based washout filter. Section 3
shows how the problem of finding an optimal trajec-
tory can be recast into a constrained QP. Section 3
also derives an orders-of-magnitude faster algorithm
for solving the constrained QP. After briefly explain-
ing the Eclipse-II motion simulator, Section 4 pre-
sents the results of simulation studies to examine the
performance of the proposed algorithm, which proves
its viability in the real-world applications.

2. LQR-based washout filter

In this section, the washout filter design methodol-
ogy based on the LQR theory is briefly summarized
[8], which serves as a foundation for the QP-based
design of an optimal trajectory in Section 3. Fig. 1
shows the problem structure for an optimal washout
filter design, adopted throughout this paper. The main
idea of the LQR-based washout filter design is to find
a linear transfer matrix W(s) that minimizes a certain
quadratic cost involving the sensation error e and
the simulator input su without violating the simula-
tor constraints. The resulting filtering equation is

() () ()U s s U ss a= W where ()U sa and ()sU s are
the Laplace transforms of the actual and the washed-
out (filtered) trajectories, respectively. Although the
algorithms are developed and tested along the longi

 Y. M. Cho et al. / Journal of Mechanical Science and Technology 21(2007) 1973~1985 1975

Fig. 1. Problem structure for an optimal washout filter.

tudinal axis only (pitch and surge) throughout this
paper, they can be readily generalized to include other
axes.

The LQR-based washout filter design begins with a
mathematical model of the human vestibular system.
Assume that the input u to the vestibular system
consists of the angular rate θ& and the specific force

xa so that
T

xu aθ⎡ ⎤= ⎣ ⎦
& . Then, the sensed rota-

tional motion q̂ (pitch) is given by the mathematical
model of the semicircular canals:

2

s a L

a 1 2

(1)ˆ
(1)(1)(1)

G s sq
s s s
τ τ θ

τ τ τ
+=

+ + +
&

3 2

3 4
3 2

2 1 0

T s T s
s T s T s T

θ+=
+ + +

& (1)

where 0
1 2

1

a
T

τ τ τ
= , 1 2

1
1 2

a

a
T τ τ τ

τ τ τ
+ += ,

()1 2 1 2
2

1 2

a

a
T

τ τ τ τ τ
τ τ τ

+ +
= , 3 0s a LT G Tτ τ= ,

4 0s aT G Tτ= and 1 2andτ τ are time constant, with

1 2τ τ≫ . aτ is the adaptation time constant, and

Lτ is time constant with the additional lead compo-
nent. The term sG defines the static sensitivity in
terms of afferent firing rate per unit of acceleration. [8,
11, 12]. Eq. (1) may be written in the state space
equation as

ˆ ,
1-3 scc 1-3 scc

scc 1-3 scc

x x u
q x u

= +
= +

A B
C D

&
 (2)

where 3

1 2 3
T

1-3x x x x R= ∈⎡ ⎤⎣ ⎦ ,

2

1

0

1 0
0 1
0 0

scc

T
T
T

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

A ,
4 2 3

1 3

0 3

0
0
0

scc

T T T
T T
T T

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

B ,

1 0 0scc = ⎡ ⎤⎣ ⎦C and 3 0scc T= ⎡ ⎤⎣ ⎦D .

The sensed specific force ˆxa is related to the in-

put specific force xa by the otolith model:

0
0

0 1
ˆ ,

()()x x
s Aa G a

s B s B
+=

+ +
 (3)

where 0 0 0 1, , , andG A B B are physical constants [8,
12]. The input specific force xa is assumed to be in
the linear combination of three components like

x x sza = f + gθ - R θ&& (4)

where szR is the radius from the motion platform
centroid to the pilot’s head. The first term denotes
the acceleration from a linear motion, the second
term stems from the gravitational force due to the
tilting motion and the third term accounts for the
inertia force from the angular acceleration. Eq.
(3) may be transformed into the Laplace domain:

() () ()x x sz
ga s = f s + - R s θ
s

& (5)

With Eq. (5), the sensed specific force in Eq. (3) is
recast into the following form

ˆ
3 2

sz sz o o o
x 0

o 1 o 1

-R s - R A s + gs + gA (s+ A)
a = G u

s(s + B)(s+ B) (s+ B)(s + B)

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 (6)

which is written in the state equation as

ˆ ,
4-8 oto 4-8 oto

x oto 4-8 oto

x x u
a x u

= +
= +

A B
C D

&
 (7)

where 5
4 5 6 7 8

T
4-8x x x x x x R= ∈⎡ ⎤⎣ ⎦ ,

0 1 0 0 0
1 0 0

0 0 0 0 0
0 0 0 0 1
0 0 0

oto

b a

b a

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

A ,

1976 Y. M. Cho et al. / Journal of Mechanical Science and Technology 21(2007) 1973~1985

0
0
0

0
0

tot

c
d ac

e
f

h af

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

B , 1 0 0 1 0ott = ⎡ ⎤⎣ ⎦C ,

0 0oto szG R= −⎡ ⎤⎣ ⎦D , 0 1a B B= + , 0 1b B B= ,

0 0()szc G R a A= − , 0()szd G g R b= + , 0 0e G gA= ,

0f G= and 0 0h G A= .

The vestibular model Eq. (2) and Eq. (7) may be

combined and transformed into the following state-
space description [13]:

,
v v v v

v v v v

x x u
y x u

= +
= +

A B
C D

&

where 8[]T T T

v 1-3 4-8x x x= ∈R , 2u ∈\ ,

T 2ˆv xy q a⎡ ⎤= ∈⎣ ⎦ \ ,
0

0
scc

v
oto

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A
A

A
,

scc
v

oto

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

B
B

B
,

0
0
scc

v
oto

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

C
C

C
 and

scc
v

oto

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

D
D

D
 [8].

Denoting the vestibular system states from the ac-

tual ride and the simulator as ax and sx and defin-
ing the corresponding state error ex as

e s ax x x−� yields the following state-space de-
scription for the sensation error e :

,
e v e v s v a

v e v s v a

x x u u
e x u u

= + −
= + −

A B B
C D D

&
 (8)

where
Ta a

a xu aθ⎡ ⎤= ⎣ ⎦
& and

Ts s
s xu aθ⎡ ⎤= ⎣ ⎦

& .

In addition to the sensation error, the washout filter
design must take into account the simulator state dx ,
which is needed to guarantee that the simulator does
not violate its constraints. Define the simulator state

dx as
T

3 2s s s s
x x xa dt a dt a dt θ⎡ ⎤

⎢ ⎥⎣ ⎦∫∫∫ ∫∫ ∫ , where s
xa

and sθ are the specific force and angular rate in the
simulator, respectively. Then, the dynamics of the
simulator state may be given by

d d d d sx x u= +A B& (9)

where

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A and

0 0
0 0
0 1
0 0
1 0

d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B .

Now, equipped with the dynamic models Eqs. (8)
and (9) for sensation error and simulator state, the
problem of designing an optimal washout filter is cast
into the framework of the LQR theory [8]:

1

0

0 1

T T

,]

()

Find () over [that minimizes the cost given by
t

T
s s d d d

t

s

J e e u u x x dt

 u t t t J

= + +∫ Q R R

 (10)

where 0 1[,]t t is the simulator ride duration (or
simulation time), ,Q R and dR are the weighting
matrices. It is well-known that the solution to the
above optimization problem may be found by solving
a Riccati equation with a commercial package, e.g.
MATLAB [13, 14], which results in the transfer ma-
trix ()sW . In practice, the procedure of designing an
optimal washout filter based on the LQR theory still
requires a few iterations. The weighting matrices

,Q R and dR are first determined and the corre-
sponding filter ()sW is found, which generates su
from au . The procedure is iterated until su satisfies
all the simulator constraints:

max ,max max

s
max max 0 1

() , () , () ,

() , and () for [,]

s s s s s s
x x

s s s

t a t a t

v t v d t d t t t

θ θ θ θ≤ ≤ ≤

≤ ≤ ∈

& &

where s

max ,max max max max, , , , ands s s s
xa v dθ θ& are

maximum allowable simulator angular velocity, spe-
cific force (or acceleration), angle, velocity and dis-
placement, respectively.

3. Fast design of the QP-based optimal

trajectory

The LQR-based washout filter in Section 2 gener-
ates filtered trajectories for the simulator only after
the filter is designed with the corresponding weights

,Q R and dR . As a result, it is also checked after
the filter design whether the designed (or filtered)
trajectory satisfies the simulator constraints or not.
Despite iterative weighting-tunning, it is inevitable

 Y. M. Cho et al. / Journal of Mechanical Science and Technology 21(2007) 1973~1985 1977

that the resulting washout filter be conservative, i.e.,
does not fully utilize the simulator capability. Of
course, when a motion simulator allows interactive
ride through devices like a joystick, the washout filter
must compute the filtered trajectory during the simu-
lator run with a pre-designed filter in order to reduce
the computational complexity, which naturally calls
for a conservative washout filter. Yet, in many appli-
cations where the trajectory is given a priori, it is
possible to design a washout filter or a filtered trajec-
tory that better utilizes the simulator capability and
consequently reduces the sensation error to lower
level. In this section, an algorithm based on QP is
proposed to generate such a trajectory while explicitly
taking into account the simulator constraints at the
stage of problem formulation. Although its applicabil-
ity is slightly limited, the proposed approach delivers
better performance than the LQR-based one when the
trajectory is given a priori.

3.1 Optimal trajectory design via constrained QP

This subsection begins with reformulating the op-
timization problem Eq. (10) in discrete time. The
justification comes from two accounts:

1. When a trajectory is given a priori, it is generally

described and stored in discrete time.
2. The optimization problem in discrete time renders

a rather nice numerical solution via QP.

First, sampling su at the sampling period

1 0()/st t t N= − gives () ()0u k u t ktss s= + for

0,1, , .k N= L The sampled (),e k (),s kθ&

(),sa kx (),s kθ (),sv k and ()sd k may be defined
similarly. When reformulating Eq. (10) in discrete
time, the simulator state dx in the cost J is fac-
tored in constraints instead of cost so that the resulting
solution to the optimization problem is ensured to
keep the simulator state within its constraints. In
terms of the sampled data, Eq. (10) becomes

T T

0

max ,max max

max max

Find () that minimizes the cost given by

() () () ()

subject to () , () , () ,

() , and () .

s
N

s s
k

s s s s s s
x x

s s s s

 u k J

J e k e k u k u k

k a k a k

v k v d k d

θ θ θ θ
=

= +

≤ ≤ ≤

≤ ≤

∑ Q R

& &

 (11)

The main goal of this section is to turn Eq. (11)
into a standard QP such as Eq. (16). Since

, , , ,s s s se a vxθ θ& and sd may be expressed in
terms of ex and dx in Eqs. (8) and (9), These
equations are converted into discrete time in order to
obtain discrete-time dynamical models for

(), (), (), (), ()s s s se k k a k k v kxθ θ& and ()sd k . The
input to the system is ()su k , while ()au k is as-
sumed to be known a priori. The discrete-time vesti-
bular model is obtained from Eq. (8) with the sam-
pling period st , using a commercial tool, e.g.,
MATLAB command c2d.m [14]. The resulting state
equation for the sensation error in discrete time be-
comes

(1) () () ()

() () () ().

d d dx k + x k u k u ke e s a
d d de k x k u k u ke s a

= + −

= + −

A B B

C D D
 (12)

Then, stack ()au k , ()su k and ()e k from 0th sam-
ple to Nth sample to obtain ae, u% % and

2(1)()N
su +∈� \

where

(0) (0)(0)
(1) (1)(1)

, ,

() ()()

a s

a s
a s

a s

u ue
u ue

e u u

u N u Ne N

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

% % %
M MM

 and

‘∼ ’ is used to denote a stack of vectors throughout
this paper. Solving Eq. (12) in discrete time gives an
expression for e% :

()s ae u - u= K% % % (13)

where

1

0 ... 0

... 0

()

d

d d d d

d d N d d−

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D

C A B DK

C A B D

M M O M
.

The cost J is consequently represented in a quad-
ratic form:

T T

e s s s
T
s s s

J e e u u

u u u

= +

= + +

Q R

A B C

% %% % % %

% %%% % %
 (14)

where
1

[, ,],
N

e diag
+

=Q Q Q
64748

% L 2 2 ,Q ×∈\
1

[, ,],
N

diags
+

=R R R
64748

% L 2 2 ,R ×∈\

1978 Y. M. Cho et al. / Journal of Mechanical Science and Technology 21(2007) 1973~1985

,T
e s= +A K Q K R% % % 2 ,T T

a eu= −B K Q K%% %
T T

a au u=C K K% % % and ,Q R are the weighting matri-
ces.
Now, turn to the constraints. The state equation for
the simulator state (4) may be solved to yield [15]

() (-1) (-1) ,s s s

sk k k tθ θ θ= + &

() (-1) (-1) ,s s s
x sv k v k a k t= +

21(+1) () () ()
2

s s s s
s x sd k d k v k t a k t= + +

 for 0,1, , 1k N= +L .

Since (), (), ()s s sk v k d kθ (not to mention ()s kθ&

and ()s
xa k) are given as summations of sθ& and s

xa

and double summation of s
xa , all of the constraints in

Eq. (11) may be expressed in terms of su% . The re-
sulting constraint equations in Eq. (11) may be turned
into a matrix inequality on su% :

su g≤F % % (15)

1
1
2
2
3

g 0 0 0 0
g I 0 0 0
g, , ,I I 0
g

I I I 0g

sg t

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥−
⎢ ⎥⎢ ⎥ ⎢ ⎥= = =⎢ ⎥⎢ ⎥ ⎢ ⎥

− ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

I
I

F MM
M
ΛN

L
L

% L M
M M O O M
L

0 1 0 0 0 0
0 0 0 1 0 0

0 0 0 0 0 1
,

0 1 0 0 0 0
0 0 0 1 0 0

0 0 0 0 0 1

,

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥− ⎣ ⎦⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

L 0
N Λ

0 L

L

L

M M M M O M M

L

L

L

M M M M O M M

L

2

1 0 0
3 1 0 0
5 3 1 0

,
2

1(2 1) (2 3)

st

N N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦− −

L

L

L

M

M M O O

M

L

max max

max max

1 2

maxmax

maxmax

,
a v

g g

va

θ θ

θθ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

&

M M

&

 and

max

3

max

d

g

d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

M

.

where 2(1) 2(1), , (),N NI M N + × +∈\
(1) (1) ,N NL + × +∈\ 1 2,g g and 2(1)

3 ()Ng +∈\ .
Now, with Eq. (14) and Eq. (15), Eq. (11) may be
turned into a standard QP which may be efficiently
solved using standard QP solution mthodologies, e.g.,
the conjugate gradient (CG) algorithm [11]. The CG
algorithm is chosen in this paper by virtue of its fast
convergence and numerical efficiency. Eq. (11) is
formulated into a QP:

2(1) 1

1()
2

minimize

subject to
N

s

T T
s s s s

u R

s

q u u u c u

u g,

+ ×∈
= +

≤

H

F

%
% % % %

% %

 (16)

where T

e s= +H K Q K R% % and 2 T T
a euc = − K Q K%% .

The following steps summarize the CG algorithm to
solve a constrained QP Eq. (17), given , ,cH F and
g% .

Step 1: Set 0i = ; select the initial point (0) 0u =% , the
residual ς and tolerance τ .

Step 2: Calculate (0) (0)()sg q u= ∇ % . If (0)g ς≤ , stop,

else set (0) (0)d g= − .

Step 3: Calculate
() ()

() ()

i T i

k i i
g d
d d

α = −
H

.

Step 4: (1) () ()i i i
s s ku u dα+ = + .

Step 5: (1) (+1)()i+ i
sg q u= ∇ % . If (1)ig ς+ ≤

and (+1)i
su g τ− ≤F % % , stop. Otherwise,

Step 6:
(+1) ()

() ()

i T i

k i i
g d

d d
β = H

H
.

Step 7: (1) (+1) ()i i i
kd g dβ+ = − +

Step 8: Set 1i = i + ; go to step 3.

The computational burden in solving a constrained

QP with the aforementioned CG algorithm is now
assessed. , ,cH F are given as inputs to the algo-

rithm. First, it takes 3()O N and 2()O N flops to

compute T
e s= +H K Q K R% % and c , respectively.

Computing F does not involve major computation
since even unwieldy ΛN may be obtained via in-
dexing instead of computing. The cost in step 2 is

2()O N flops to compute the gradient ((0)
su c= +H %)

 Y. M. Cho et al. / Journal of Mechanical Science and Technology 21(2007) 1973~1985 1979

since step 2 involves a matrix-vector product
(2()O N) and vector-vector summation (()O N). In

step 3, the required number of operations is 2()O N

flops; ()O N flops to calculate () ()i T ig d and
2()O N flops to compute () ()i id dH . Step 4 costs

()O N flops since it is only vector addition. The cost

in step 5 is 2()O N flops to calculate (+1)()i
sq u∇ %

and (+1)i
suF % . Step 6 requires 2()O N flops to com-

pute the matrix-vector product as step 3. Finally step
7 takes ()O N flops. For typical examples, the num-
ber of total iterations in solving Eq. (17) turns out to
be 10~20. In the view of storage requirement, H and

5(1) 2(1)N NF + × +∈\ need 2()O N storage space

and vectors () (),i i
su g and ()id require ()O N

bytes. In summary, the CG-based solution to Eq. (17)
costs 3()O N flops and 2()O N storage space. This
computational load is quite burdensome despite now
readily available computing power since a typical ride
in a motion simulator requires 4 510 ~ 10N = .

3.2 Fast algorithms for optimal trajectory design

In the standard solution described in Section 3.1,
the tremendous computational load incurs since the
matrix-matrix/matrix-vector products are performed
without exploiting the structures of the underlying
matrices. However, the QP problem Eq. (17) has ma-
trices with special structures, which are either Toe-
plitz or Toeplitz-derived matrices. It is well-known
that the Toeplitz matrix-vector products can be com-
puted using Fast Fourier Transform (FFT) [16, 17].
Then, it is worth examining each step to see how it
may be sped up.

First, consider the Hessian 2()T
e s= +H K Q K R% % ,

which needs to be pre-computed in the CG-based QP
solver in Section 3.1. As previously shown, it takes

3()O N to compute H . However, careful examina-
tion of the CG algorithm in the Section 3.1 indicates
that H should not be pre-computed. Since H is
used in matrix-vector products only (see steps 2, 3, 5
and 6 in Section 3.1), it is better to store its element
matrices , eK Q% and sR% where K is block-

Toeplitz and ,e sQ R% % are block-diagonal. Then
when each of the matrix-vector products involving
H is computed, the element matrix-vector product is

repeatedly computed, which costs only 2()O N
flops. Moreover, the structures of the element matri-
ces in H allow further reduction in computation as
shown below. Now steps 2-6 are investigated in detail.
Consider ()i

suK % , a sub-step in executing steps 2 and

5 that require ()i
suH % .

()

()()

()1

(0)0 ... 0
(1)... 0

()()

id
s
id d di ss

id d N d d
s

u
uu

u N−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

D
C B DK

C A B D

%
MM M O M

()

() ()
()

1 () ()

(0)
(0) (1)

() (0) ()

d i
s

d d i d i
is s

d d N d i d i
s s

u
u u

u u N

D
C B D

C A B D−

⎡ ⎤
⎢ ⎥
⎢ ⎥+⎢ ⎥= δ⎢ ⎥
⎢ ⎥
⎢ ⎥

+ +⎢ ⎥⎢ ⎥⎣ ⎦

�
#

"

.

There are N+1 blocks in the first column of K

and each bock has 4 elements. If the computation is
performed without utilizing the underlying structure,
it requires 2()O N flops as noted earlier. Introduce

new notations for ,dD ,d dC B ,L
1 2 2() ()d d N dC A B− ×∈\ for simplicity:

1 1 2 2
11 12 11 12
1 1 2 2
21 22 21 22

, , ,d d dk k k k

k k k k

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

D C B L

+2 +2
11 12

+2 +2
21 22

()
k k

d d k d
k k

k k

k k

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

C A B

for 0,1, , 1k N= −L

In addition, decompose ()iδ into two vectors ()i
eδ

(1N+∈\) and ()i
oδ (1N+∈\) that consist of its

even and odd elements, respectively, so that
()() (2)ii

e kδ δ= and ()() (2 +1)ii
o kδ δ= for

0,1, , .k N= L ()i
su% may be factored into ()i

s,eu% and
()i
s,ou% in a similar manner. Then, it can be shown ()i

eδ

and ()i
oδ may be expressed as summations of Toe-

plitz-vector products, respectively:

() () () () () ()
11 12 21 22,i i i i i i

o o e e o eδ δ δ δ δ δ= + = +T T T T

where

1980 Y. M. Cho et al. / Journal of Mechanical Science and Technology 21(2007) 1973~1985

1 0 011
2 1 011 11

,3 211
11 11

+1 1
11 11

k

k k

k k

Nk k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

T

L

M

O

M O

L

1 0 012
2 1 012 12

,3 212
12 12

+1 1
12 12

k

k k

k k

Nk k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

T

L

M

O

M O

L

1 0 021
2 1 021 21

,3 221
21 21

+1 1
21 21

k

k k

k k

Nk k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

T

L

M

O

M O

L

1 0 022
2 1 022 22
3 222 22 22

+1 1
22 22

k

k k

k k

Nk k

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

T

L

M

O

M O

L

The above Toeplitz matrices can be embedded into

the corresponding circulant matrices. Then, since the
circulant matrices are diagonalized by the Fourier
transformation matrices [16, 18], the matrix-vector
product (()i

suK %) may be carried out using FFT, which
reduces the flop count to 2(log)O N N [16]. Overall,
it takes 2(log)O N N flops to calculate suH % since

,e sQ R% % are block-diagonal and TK is also block-

Toeplitz. The linear cost matrix (2 T T
a euc = − K Q K%%)

may be computed in the same way, so that the result-
ing cost of step 2 becomes 2(log)O N N

It turns out that the idea of speeding up ()i
suK %

computation plays a crucial role in speeding up the
CG-based solution methodology in Section 3.1. Note
that the same structure exists in computing ()idK , a
sub-step in executing steps 3 and 6 with ()i

su% substi-

tuted for ()id . As a result, steps 2-6 except for step 5
may be executed at 2(log)O N N flops. Finally,
consider step 5. Since F consists of sub-matrices

, ,I M ΛN , the computation on each sub-matrix may

be performed separately when calculating (+1)i
suF % .

Since N is used to select even-positioned element,
it does not involve any computational cost. Since

, ,I M Λ are block-Toeplitz and L is truly Toeplitz,
FFT again reduces the total computational complexity
of step 5 to 2(log)O N N flops.

Now, turn to the storage requirement. First, con-
sider the Hessian H . Note that it takes 2()O N
storage space to store H . However, since only the
matrix-vector products need to be computed and

, ,e sK Q R% % are block-Toeplitz and block diagonal, it
is enough to store only the first block columns or the

block diagonals of the element matrices. For
2(1) 2NK + ×∈\ , only the following matrix TK is

stored:

1()

d

d d
T

d d N d

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

D

C BK

C A B

M
,

which requires only ()O N bytes. Even smaller stor-
age space is needed for eQ% and sR% since they
consist of Q and R , both 2 2× matrices. There-
fore, the whole required storage space in steps 2, 3, 5
and 6 is ()O N bytes. In step 5, the storage space for
F can be reduced to ()O N bytes because , ,M Λ
and L are block-Toeplitz and I is diagonal.
Overall, the proposed fast algorithm requires only

2(log)O N N flops and ()O N storage space. In
summary, Table 1 compares the computational loads
of the existing algorithm in Section 3.1 and the fast
algorithm in Section 3.2.

In a typical ride that spans 300 seconds at the sam-
pling rate 100Hz, N becomes 30000 and the required
flop counts are on the order of 510 in the proposed
fast algorithm. Flops counts are drastically reduced
compared to those in the existing algorithm, which is
on the order of 1310 . Since typically it takes eight
bytes to store a double precision real number by IEEE,
floating-point standard [10], the required storage in
the fast algorithm is on the order of mega-bytes in-
stead of giga-bytes in the existing algorithm. Such
reduction in flop counts and storage space allows
generating optimal trajectories for extremely long
rides, e.g., 810N = .

Table 1. Comparison of the computational loads for the exist-
ing and and proposed algorithms.

 Flop counts Storage space(bytes)

Steps Existing Proposed Existing Proposed

Pre-step 3()O N Unnecessary 2()O N Unnecessary

2

3
2()O N 2(log)O N N 2()O N ()O N

5

6
2()O N 2(log)O N N 2()O N ()O N

Total 3()O N 2(log)O N N 2()O N ()O N

 Y. M. Cho et al. / Journal of Mechanical Science and Technology 21(2007) 1973~1985 1981

Before proceeding, it must be noted that the pro-
posed QP-based trajectory design methodology is
primarily applicable to the cases with the trajectory
given a priori and has limitations when the interactive
ride is desired. Yet, with the advent of the numeri-
cally efficient implementation developed in this sub-
section, the QP-based trajectory design methodology
may be used to generate the filtered trajectory even
without a predetermined trajectory. By assuming a
finite window (horizon), a pseudo-optimal trajectory
may be obtained over the finite window. Whenever
the trajectory is changed by the user (or rider), the
filtered trajectory is re-computed and updated. Al-
though not optimal in any sense, the resulting filtered
trajectory has potential to utilize the simulator con-
straints to great extent.

4. Performance analasis on the Eclipse-II

motion simulator

4.1 Eclipse-II motion simulator

A motion simulator consists of an audio system to
generate sounds, a visual system to display images,
and a motion base system to generate movement ac-
cording to motion cues. Most conventional simulators
adopt the Stewart platform as the motion base [18-20].
The Stewart platform is a six degrees-of-freedom
parallel mechanism that enables both translational and
rotational motions [9, 20]. However, such motions as
the 360-degree overturn are impossible in the Stewart
platform, because the platform can only tilt as much
as ± 20-30 degrees. That is, it cannot reproduce the
overturn motion of the aircraft or the 360-degree spin
of the roller coaster. A novel six degrees-of-freedom
parallel mechanism architecture, which is called the
Eclipse-II, has been designed for the motion base of a
motion simulator [9, 10]. Fig. 2 shows the Eclipse-II
mechanism and an example of its rotational motion
capability [9]. Since the Eclipse-II has no limitation
on its rotational motion, it is possible to develop a
more realistic and higher fidelity simulator by adopt-
ing the Eclipse-II mechanism as the motion base of a
flight simulator or a roller coaster motion simulator.

Despite these merits, the Eclipse-II motion simula-
tor has a small workspace especially in its longitudi-
nal motion, which limits its capability of reproducing
the specific force sensation. In this respect, the
Eclipse-II motion simulator brings up quite a chal-
lenging task of optimal-trajectory design. In the fol-
lowing subsection, the novel trajectory design

Fig. 2. Eclipse-II mechanism and its 360-degree continuous
rotational motions.

approach proposed in Section 3 is applied to generate
optimal trajectories for the Eclipse-II motion simula-
tor.

4.2 Performance analysis

The major contributions of this paper are two-fold:

1. A novel approach is proposed to generate optimal

trajectories for a motion simulator based on the
constrained QP.

2. A fast algorithm is developed to solve the con-
strained QP by exploiting the Toeplitz structures of
the underlying matrices.

The performance analysis in this section focuses on

the first item after mentioning that the fast algorithm
in Section 3.2 is verified to be equivalent to the stan-
dard one in Section 3.1 in terms of resulting solutions.
Therefore, a distinction between two algorithms is not
made throughout this section. The performance of the
proposed algorithm is then benchmarked against only
the LQR-based washout algorithm by Telban and
Cardullo [8] among others, noting that the LQR-
based washout algorithm outperforms other existing
ones by generating filtered trajectories in the most
systematic and accountable manner. Since it is the
explicit formulation of the simulator state dx as
constraints into the optimization problem that gives
the edge to the QP-based algorithm over the LQR-
based one, special attention must be paid to how the

1982 Y. M. Cho et al. / Journal of Mechanical Science and Technology 21(2007) 1973~1985

two algorithms handle the constraints on dx as well
as the sensation error when comparing performance.

During the performance analysis, both algorithms
use the same values for physical parameters in Eq. (1)
and Eq. (3) and the translational break frequency
unless mentioned otherwise [8, 12]. The spatial and
dynamical constraints on the Eclipse- II motion simu-
lator are given as

 the radius of the workspace cylinder 37.2 mm
 the height of the workspace cylinder 78.6 mm
 maximum linear velocity 0.2 m/s
 maximum linear acceleration 0.1g or 0.98m/s2
 maximum angular rate 2 rad/s

where the workspace of Eclipse-II is described as a
cylinder for convenience [11, 21]. It must be noted
that the version of the Eclipse-II motion simulation
under consideration is a working sample of the full-
fledged one (built for proof of concept) and has poor
spatial and dynamical capabilities for a motion simu-
lator. Ironically, such limited capabilities make the
problem of designing optimal trajectories more chal-
lenging and the performance gap between different
algorithms more pronounced. Another point worth
mentioning in regard to the constraints is that the
workspace of the working sample has relatively
smaller lateral span than the vertical one.

The simulation studies are primarily conducted on
the longitudinal response of angular velocity and
linear acceleration (or specific force) to the pitch/
surge motions (extensions to other motions are rather
trivial). Numerous trajectories have been used to
compare the performances of the LQR- and QP-based
algorithms. Despite comparable performances in a
few occasions, the QP-based algorithm consistently
show superior performance in most trajectories.
Whenever a trajectory requires the simulator to push
the limits of its capabilities, the performance gap be-
tween the two algorithms becomes obvious. This
paper presents detailed examinations on three repre-
sentative trajectories for terseness and clarity: doublet
pitch, linear acceleration, and simultaneous applica-
tion of these two input trajectories. The three input
trajectories span over 4 seconds. The sample rate of
the trajectories is chosen to be 100Hz to allow smooth
transition from sample to sample. For each input tra-
jectory, the LQR- and QP-based algorithms compute
the optimized angular velocity (sθ&) and linear accel-
eration (s

xa). Since the sensation error is of utmost

interest, the raw data θ& and xa are processed with
the vestibular model Eq. (1) and Eq. (3) to yield the
sensed angular velocity q̂ and specific force ˆxa . It
is worth noting that LQR-based algorithm requires
repeated weight (, , and dQ R R) tuning in order to
generate the results presented here while the QP-
based one produces the results in one-shot. It should
be noted that all conditions on the simulation are in-
tended to validate the capability of the proposed QP-
based approach to fully utilize the workspace of the
simulator and that they exceed the constraints on the
simulator.

First, a doublet pitch is examined as an input trajec-
tory, which has the maximum magnitude of 3 rad/s.
Therefore, the corresponding input force consists of
only angular velocity term without any linear accel-
eration as shown in Fig. 3 (a) and (b), respectively.
Note that the maximum magnitude exceeds the simu-
lator constraint on the angular rate 2 rad/s. Fig. 3 (a)
shows that the input angular velocity to the simulator
goes off its constraint between 1 and 2 seconds. Both
the LQR- and QP-based algorithms satisfy the con-
straint by keeping the optimized angular velocity
below 2 rad/s, as expected. Other than that, the opti-
mized trajectories of angular velocities and linear
accelerations from the two algorithms differ qualita-
tively to great extent. The LQR-based algorithm sim-
ply reduces the magnitude of the simulator states,
which results in the scale-down angular velocity pro-
file. On the other hand, the QP-based algorithm takes
full advantage of the allowable range of the angular
velocity by 1) reproducing the angular velocity until it
saturates, 2) keeping it at the maximum once it satu-
rates 3) shaking the induced linear acceleration (Fig. 3
(b)) simultaneously to reject the effect of the saturated

sθ& . As a result, the sensed angular velocity q̂ and
sensed specific force ˆxa from the QP-based algo-
rithm track the corresponding q̂ and ˆxa from the
input trajectory much better than the ones from the
LQR-based algorithm as shown in Figs. 3 (c) and (d).
The QP-based algorithm truly minimizes the sensa-
tion error better although the LQR-based one pro-
duces the sensed q̂ and ˆxa whose shapes only
resemble the ones from the input trajectory closely. It
is noteworthy that the better-coordinated effort be-
tween the rotational and translational motions has
helped to further reduce the sensation error in the QP-
based approach. In other words, although the apparent

 Y. M. Cho et al. / Journal of Mechanical Science and Technology 21(2007) 1973~1985 1983

Fig. 3. Comparison of LQR- and QP-based trajectories to
pitch input; (a) angular velocities, (b) linear accelerations, (c)
sensed angular velocities, (d) sensed specific forces.

pattern of the linear acceleration in Fig. 3 (b) does not
resemble that of the real motion, the rotational motion
effectively compensates for the discrepancy in the
linear motion by virtue of the coupling between the
two motions (as manifested by Eq. (4)). Overall, the
explicit formulation of the simulator state dx as
constraints provides clear performance improvement
in the QP-based approach over the LQR-based coun-
terpart. Moreover, the QP-based approach achieves
such performance improvement without iterative
weight tuning (necessary in the LQR-based approach
in order to keep dx within the simulator constraints).

Next, consider the linear acceleration as an input
trajectory without angular velocity shown in Fig. 4 (a)
and (b). The linear acceleration is increased to 1.0
m/s2 till 3 seconds and kept at the same level after-
ward. Considering that the simulator constraint on
linear acceleration is 0.98 m/s2, the current input tra-
jectory also pushes the simulator to exceed its con-
straints. Recall that the working sample of the
Eclipse-II motion simulator has a severe limitation on
translation along the longitudinal direction in its
workspace, which makes it impossible to directly
realize the linear acceleration with high fidelity. Such
an apparent impasse is circumvented by judicious

Fig. 4. Comparison of LQR- and QP-based trajectories to
surge input; (a) angular velocities, (b) linear accelerations, (c)
sensed angular velocities, (d) sensed specific forces.

utilization of the human vestibular system, i.e., creat-
ing the sensed specific force by tilting the motion
platform. Figs. 4 (a) and (b) manifest the role of the
crossover path, where the rotational motion helps to
realize the translational motion in both LQR- and QP-
based approaches. Note that the level of the angular
velocity is very low in Fig. 4 (a), which prevents the
pilot or rider from experiencing motion miscue, i.e.,
rotational motion instead of translation motion. Also,
note that both LQR- and QP-based approaches do not
push the simulator to its linear acceleration limit due
mainly to its workspace constraints. In other words,
what determines the limit is not acceleration, but dis-
placement. Although Fig. 4 (c) displays a slight mo-
tion miscue in terms of sensed angular velocity (spe-
cial attention must be paid to the small magnitude
along the y-axis in Figs. 4 (a) and (c), Fig. 4 (d) sup-
ports that the gain in sensed specific force outweighs
the negligible motion miscue. It is clear that the QP-
based approach outperforms the LQR-based one as
far as the sensation error is concerned. Again, the QP-
based approach reproduces the sensed specific force
too close to distinguish from the one from the input
trajectory while the LQR-based one is content with a
trajectory that resembles in shape but leads to signifi-
cant sensation error.

1984 Y. M. Cho et al. / Journal of Mechanical Science and Technology 21(2007) 1973~1985

Fig. 5. Comparison of LQR- and QP-based trajectories to
pitch input/ surge input; (a) angular velocities, (b) linear
accelerations, (c) sensed angular velocities, (d) sensed spe-
cific forces.

Finally, the doublet pitch in Fig. 3 (a) and the linear

acceleration in Fig. 4 (a) are exerted simultaneously
as an input trajectory. Similar interpretations from the
previous two cases may be made in Fig. 5. The QP-
based approach generates a trajectory that results in
much smaller sensation errors in the sensed angular
velocity and specific force. In other words, even with
the combined motion as an input trajectory, the trend
in the previous two cases continues. The performance
analysis presented in this section clearly demonstrates
that the proposed QP-based algorithm is capable of
generating optimal trajectories in a systematic, ac-
countable and intuitive manner, not to mention its
blazingly fast implementation.

5. Concluding remarks

A novel methodology of generating an optimal tra-
jectory for a motion simulator is developed that ex-
plicitly takes into account, and thereby even exploits,
the simulator constraints. Building upon the existing
approach based on the LQR theory, the proposed
algorithm tries to minimize the human sensation error
while ensuring the simulator stays within its con-
straints. It turns out that when the trajectory is given a
priori, the problem of computing the optimal trajec-
tory can be recast into a constrained QP. Although it

may be readily solved by using now commercially
available tools when the trajectory is not too long, the
constrained QP calls for a fast algorithm that runs
faster with less storage space. By taking advantage of
the Toeplitz structures of the underlying matrices, an
orders-of-magnitude faster algorithm is obtained that
requires much less storage space. The viability of the
proposed algorithm is tested on the Eclipse-II motion
simulator. The simulation results show that the pro-
posed QP-based algorithm outperforms the existing
LQR-based one mainly in three accounts: small sen-
sation error, full utilization of the workspace and ma-
chine capacity, and no need for iterative weight-
tuning. The proposed algorithm has been successfully
used to generate optimal trajectories for the Eclipse-II
motion simulator at Seoul National University in
Korea. Overall, the following practical scheme is
proposed while weighing the performance and com-
plexity together: in normal situations, the conven-
tional LQR-based approach should be taken by virtue
of its simplicity and reasonable performance, and in
other situations where certain trajectories violate the
motion limit of the simulator, the LQR-based ap-
proach should be switched to the QP-based one capa-
ble of effectively handling severe constraints as
shown in this paper.

References

[1] F. Barbagli, D. Ferrazin, C.A. Avizzano, M. Ber-
gamasco, Washout filter design for a motorcycle
simulator, Proc. of the IEEE Virtual Reality, Yoko-
hama, Japan. (2001) 225-232.

[2] I. Rock, An introduction to perception, Macmillan,
New York, USA, (1975) Chap. 5.

[3] L. R. Young, Visual vestibular interaction, sixth
international symposium on biocybernetics, control
mechanisms in bio-and ecosystems, International
Federation of Automatic Control, Leipzig, East
Germany. (1977).

[4] W. H. Levinson, and A. M. Junker, A model for the
pilot’s use of motion cues in steady-state roll axis
tracking tasks, Proc. of the AIAA Flight Simulation
Technology, Arlington, Texas, USA. (1978) 190-
197.

[5] L. D. Reid and M. A. Nahon, Flight simulation
motion-base drive algorithms: Part 1 – Developing
and testing the equations, UTIAS Report. No. 296
(1985) CN ISSN 0082-5255.

[6] W. Wu and F. M. Cardullo, Is there an optimum
cueing algorithm? AIAA Modeling and Simulation

 Y. M. Cho et al. / Journal of Mechanical Science and Technology 21(2007) 1973~1985 1985

Technologies Conference, New Orleans, LA.
(1997) 23-29.

[7] M. Nahon and D.L. Reid, Adaptive simulator mo-
tion software with supervisory control, Journal of
Guidance, Control and Dynamics 15. 15 (2) (1992)
376-383.

[8] F. M. Cardullo and R. J. Telban, Development in
human centered cueing algorithms for control of
flight simulator motion systems, Proc. of the AIAA
Modeling and Simulation Technologies Conference,
AIAA-99-4328. (1999).

[9] J. Hwang, Analysis and design of the eclipse- II
parallel mechanism for motion simulator, Ph.D.
thesis, School of Mechanical and Aerospace Engi-
neering, Seoul National University, Korea. (2002).

[10] J. W. Kim, J. C. Whang, J. C. Kim, F. C. Park,
Eclipse-II: A new parallel mechanism enabling con-
tinuous 360-degree spinning plus three-axis transla-
tional motions, IEEE Transactions on Robotics and
Automation. 18 (3) (2002) 367-373.

[11] Edwin K. P. Chong and H. Z. Stanislaw, An intro-
duction to optimization, John Wiley & Sons, Inc.
(1996).

[12] R. J. Telban, F. M. Cardullo and L. Guo, Investi-
gation of mathematical models of otolith organs for
human centered motion cueing algorithm, Proc. of

the AIAA Modeling and Simulation Technologies
Conference, Denver, Colorado, AIAA 99-4328.
(2000).

[13] T. Kailath, Linear system, Englewood Cliffs, Pren-
tice-Hall, Inc. (1980).

[14] D. Hanselman and B. Littlefield, Mastering
MATLAB 6, Prentice-Hall, Inc. (2000).

[15] M. O. James, Numerical analysis, SIAM, Phila-
delphia. USA, (2002).

[16] P. J. Davis, Circulant matrices, John Wiley & Sons.
(1979).

[17] H. G. Gene and F. Van Loan. Charles, Matrix
computations, Johns Hopkins, USA, (1996).

[18] J. B. Song, U. J. Jung and H. D. Ko, Washout
algorithm with fuzzy-based tuning for a motion
simulator, KSME I. J. 17 (2) (2003) 221-229.

[19] K. S. You, M. C. Lee, E. Kang and W.S. Yoo,
Development of a washout algorithm for a vehicle
driving simulator using new tilt coordination and re-
turn mode, KSME I.J. 19 (1) (2005) 272-282.

[20] D. Li and S. E. Salcudean, Modeling, Simulation,
and control of a hydraulic stewart platform, Proc. of
the IEEE International Conference on Robotics and
Automation, Albuquerque, New Mexico. (1997).

[21] J. L. Meiry, The vestibular system and human
dynamic space orientation, NASA CR-628 (1966).

	Fast design of the QP-based optimal trajectory for a motion simulator
	Abstract
	1. Introduction
	2. LQR-based washout filter
	3. Fast design of the QP-based optimal trajectory
	4. Performance analasis on the Eclipse-Ⅱ motion simulator
	5. Concluding remarks
	References

